首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts.Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.  相似文献   

2.
We describe an organotypic model of human skin comprised of a stratified layer of human epidermal keratinocytes and dermal fibroblasts within a contracted collagen lattice. Feasible and reproducible production of the skin construct has required the use of traditional as well as specialized culture techniques. The configuration of the construct has been engineered to maintain polarity and permit extended culture at the air-liquid interface. Morphological, biochemical and kinetic parameters were assessed and functional assays were performed to determine the degree of similarity to human skin. Light and ultrastructural morphology of the epidermis closely resembled human skin. The immunocytochemical localization of a number of differentiation markers and extracellular matrix proteins was also similar to human skin. Kinetic data showed a transition of the epidermal layer to a morein vivo-like growth rate during the development of the construct at the air-liquid interface. The barrier properties of the construct also increased with time reaching a permeability to water of less than 2%·h after approximately 2 weeks at the air-liquid interface which is still on average 30-fold more water-permeable than normal human skin. The construct is currently used forin vitro research and testing and is also being tested in clinical applications.  相似文献   

3.
4.
Summary A chemically defined medium containing 1.2 mM Ca2+ has been developed for the culture of primary epidermal keratinocytes from untreated adult mice such that proliferation is accompanied by the formation of desmosomes and stratification. Cultured cutaneous explants of 1 mm2 from the backs of untreated, control, and carcinogen-exposed mice all demonstrated epithelial outgrowth within 1 wk, and by 5 wk approached confluence with characteristics of terminal differentiation such as desmosomes and stratification. Addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) to the medium in concentrations of 0.001, 0.01, and 0.1 μg/ml resulted in a delay of approximately 1 wk in the outgrowth of the explants compared with the acetone controls and in a 30% decrease in the diameter of the epithelial outgrowth at 3 wk. The inhibition in outgrowth was overcome at higher concentrations (0.5, 1.0, and 10 μg/ml TPA). No obvious differences in morphology or in the rate of epidermal outgrowth within a 5-wk interval among explants from normal untreated epidermis, epidermis from mice treated with acetone, or epidermis from mice treated with an initiating application of 7,12-dimethylbenz[a]anthracene were observed. The defined composition of this medium and its ability to support reproducibly and conveniently both proliferation and differentiation of normal as well as treated primary adult murine epidermal cells suggest that it should be useful for a number of studies not previously possible that are relevent to the biology of the skin, to toxicology, and to carcinogenesis in the murine model system.  相似文献   

5.
Hyaluronan (hyaluronic acid, HA) is an abundant matrix component between keratinocytes of the epidermis in vivo, but its function there remains unclear. We used a lift culture model, in which rat epidermal keratinocytes (REKs) stratify at an air-liquid interface, to ask whether HA may regulate epidermal proliferation and/or differentiation. In this model, early markers of differentiation (keratin 10), and later markers (profilaggrin, keratohyalin granules, cornified layers) are faithfully expressed, both temporally and spatially. HA, measured using two different analytical techniques, accumulated to high levels only in the presence of an intact basement membrane that seals the epidermal compartment. To test whether HA has a functional role in differentiation, Streptomyces hyaluronidase (StrepH, 1 U/ml; digests >95% of HA within 4 h) was added daily to lift cultures during stratification time-course experiments over 5 days. In StrepH-treated cultures, the expression of profilaggrin and the number and size of keratohyalin granules were significantly increased relative to controls using semiquantitative histological analyses. The StrepH-related accumulation of K10 protein and profilaggrin/filaggrin were confirmed by Western analyses. Thus, it appears that the presence of intercellular HA in the epidermis acts as a brake upon intracellular events that occur during keratinocyte differentiation.  相似文献   

6.
The effect of human fetal fibroblasts and adult keratinocytes on collagen contraction was studied. Keratinocytes embedded in collagen lattices did not spread and produced only a slight contraction. When keratinocytes were seeded on the surface of tht gel, the contraction began within 24 h and correlated with the formation of epithelial colonies. Transplantation of multilayered epithelial sheets on the gel significantly accelerated the onset of contraction. Keratinocytes seeded on and fibroblasts grown in collagen lattices cooperatively contracted the gel, and keratinocytes were able to stimulate gel contraction even when they had no contact with the collagen roughly populated with fibroblasts. Swiss 3T3 cells remained spherical in collagen lattices and did not contract the gel but when cultivated with keratinocytes they stimulated gel contraction. In their turn, keratinocytes influenced the behaviour of Swiss 3T3 cells which elongated and produced processes. We suggest that both keratinocytes and mesenchymal cells can affect gel contraction 1) by a direct contact with collagen lattices, and 2) through potentiation of the ability of another cell type to contract the gel.  相似文献   

7.
The triple-helical domain of type VII collagen was isolated from human placental membranes by mild digestion with pepsin, and polyclonal antibodies were raised in rabbits against this protein. After affinity purification the antibodies specifically recognized type VII collagen in both the triple-helical and the unfolded state. They also reacted with the fragments P1 and P2, derived from the triple-helical domain by further proteolysis with pepsin, but did not crossreact with other biochemical components of the dermal connective tissue. In skin the presence of a fragment of type VII collagen, similar to that isolated from placenta, was demonstrated by SDS-PAGE and immunoblotting. Type VII collagen represented less than 0.001% of the total collagen extracted by pepsin digestion from newborn or adult skin. The tissue form of type VII collagen was obtained from dermis after artificial epidermolysis with strongly denaturing buffers under conditions reducing disulfide bonds. The protein was identified by immunoblotting with the antibodies. The molecule was composed of three polypeptides with an apparent molecular mass of about 250 kDa, each. Similar large-molecular-mass chains could be identified by immunoblotting in extracts of human fibroblasts in culture.  相似文献   

8.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

9.
Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposures to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.  相似文献   

10.
Our aim was to design a simple compression system and investigate the influence of mechanical stress on skin-like structures. Many mechanical compression studies have employed intricate culture systems, so the relationship between extracellular matrix material and the response of skin cells to mechanical stress remains unknown. Our approach uses only glass vials, 6-well plates and standard laboratory equipment. We examined the influence of mechanical stress on human skin fibroblasts embedded within a collagen sponge. The results show that mechanical compression increases MMP-1 and MMP-2 release by the cells into the the cell culture. Our results suggest that pressure on the skin may affect extracellular matrix degradation through some as yet unidentified pathways and that IL-6 mRNA expression may be involved in this effect. Using our approach, the effects of static mechanical stress on protein expression by cells in the culture medium and in sponges can be easily examined, and therefore this system will be useful for further analyses of skin responses to mechanical stress.  相似文献   

11.
Besides medical application as composite skin grafts, in vitro constructed skin equivalents (SEs) or organotypic co-cultures represent valuable tools for cutaneous biology. Major drawbacks of conventional models, employing collagen hydrogels as dermal equivalents (DEs), are a rather poor stability and limited life span, restricting studies to early phases of skin regeneration. Here we present an improved stabilised in vitro model actually providing the basis for skin-like homeostasis. Keratinocytes were grown on dermal equivalents (DEs) reinforced by modified hyaluronic acid fibres (Hyalograft-3D) and colonised with skin fibroblasts, producing genuine dermis-type matrix. These SEs developed a superior epidermal architecture with regular differentiation and ultrastructure, which occurred also faster than in SEs based on collagen-DEs. Critical aspects of differentiation, still unbalanced in early stages, were perfectly re-normalised, most strikingly the co-expression of keratins K1/K10 and downregulation of regeneration-associated keratins such as K16. The restriction of integrin and K15 distribution as well as keratinocyte proliferation to the basal layer underlined the restored tissue polarity, while the drop of growth rates towards physiological levels implied finally accomplishment of homeostasis. This correlated to faster basement membrane (BM) formation and ultrastructurally defined dermo-epidermal junction including abundant anchoring fibrils for strong tissue connection. Whereas the fibroblasts in the scaffold initially secreted a typical provisional regenerative matrix (fibronectin, tenascin), with time collagens of mature dermis (type I and III) were accumulating giving rise to an in vivo-like matrix with regularly organised bundles of striated collagen fibrils. In contrast to the more catabolic state in conventional DEs, the de novo reconstruction of genuine dermal tissue seemed to be a key element for maintaining prolonged normal keratinocyte proliferation (followed up to 8 wks), fulfilling the criteria of tissue-homeostasis, and possibly providing a stem cell niche.  相似文献   

12.
RXR-alpha is the most abundant of the three retinoid X receptors (RXRs) in the epidermis. In this study, we have used Cre-mediated recombination to selectively disrupt the mouse gene for RXR-alpha in epidermal and hair follicle keratinocytes. We show that RXR-alpha is apparently dispensable for prenatal epidermal development, while it is involved in postnatal skin maturation. After the first hair pelage, mutant mice develop a progressive alopecia, histologically characterised by the destruction of hair follicle architecture and the formation of utriculi and dermal cysts in adult mice. Our results demonstrate that RXR-alpha plays a key role in anagen initiation during the hair follicle cycle. In addition, RXR-alpha ablation results in epidermal interfollicular hyperplasia with keratinocyte hyperproliferation and aberrant terminal differentiation, accompanied by an inflammatory reaction of the skin. Our data not only provide genetic evidence that RXR-alpha/VDR heterodimers play a major role in controlling hair cycling, but also suggest that additional signalling pathways mediated by RXR-alpha heterodimerised with other nuclear receptors are involved in postnatal hair follicle growth, and homeostasis of proliferation/differentiation of epidermal keratinocytes and of the skin's immune system.  相似文献   

13.
The epidermal compartment is complex and organized into several strata composed of keratinocytes (KCs), including basal, spinous, granular, and cornified layers. The continuous process of self-renewal and barrier formation is dependent on a homeostatic balance achieved amongst KCs involving proliferation, differentiation, and cell death. To determine genes responsible for initiating and maintaining a cornified epidermis, organotypic cultures comprised entirely of stratified KCs creating epidermal equivalents (EE) were raised from a submerged state to an air/liquid (A/L) interface. Compared to the array profile of submerged cultures containing KCs predominantly in a proliferative (relatively undifferentiated) state, EEs raised to an A/L interface displayed a remarkably consistent and distinct profile of mRNAs. Cultures lifted to an A/L interface triggered the induction of gene groups that regulate proliferation, differentiation, and cell death. Next, differentially expressed microRNAs (miRNAs) and long non-coding (lncRNA) RNAs were identified in EEs. Several differentially expressed miRNAs were validated by qRT-PCR and Northern blots. miRNAs 203, 205 and Let-7b were up-regulated at early time points (6, 18 and 24 h) but down-regulated by 120 h. To study the lncRNA regulation in EEs, we profiled lncRNA expression by microarray and validated the results by qRT-PCR. Although the differential expression of several lncRNAs is suggestive of a role in epidermal differentiation, their biological functions remain to be elucidated. The current studies lay the foundation for relevant model systems to address such fundamentally important biological aspects of epidermal structure and function in normal and diseased human skin.  相似文献   

14.
The lifespan of human fibroblasts and other primary cell strains can be extended by expression of the telomerase catalytic subunit (hTERT). Since replicative senescence is accompanied by substantial alterations in gene expression, we evaluated characteristics of in vitro-aged dermal fibroblast populations before and after immortalization with telomerase. The biological behavior of these populations was assessed by incorporation into reconstituted human skin. Reminiscent of skin in the elderly, we observed increased fragility and subepidermal blistering with increased passage number of dermal fibroblasts, but the expression of telomerase in late passage populations restored the normal nonblistering phenotype. DNA microarray analysis showed that senescent fibroblasts express reduced levels of collagen I and III, as well as increased levels of a series of markers associated with the destruction of dermal matrix and inflammatory processes, and that the expression of telomerase results in mRNA expression patterns that are substantially similar to early passage cells. Thus, telomerase activity not only confers replicative immortality to skin fibroblasts, but can also prevent or reverse the loss of biological function seen in senescent cell populations.  相似文献   

15.
Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT–PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin–EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing.  相似文献   

16.
Using chimeric human epidermal reconstructs, we previously demonstrated that epidermal pigmentation is dependent upon the phototype of melanocytes. We report here several lines of experimental evidence for dermal modulation of human epidermal pigmentation. First, phototype II-III epidermal reconstructs grafted on the back of immunotolerant Swiss nu/nu mice developed a patchy pigmentation dependent on the presence of colonizing human or mouse fibroblasts. Similarly, human white Caucasoid split-thickness skin xenografted on the same mouse strain became black within 3 months and histochemistry revealed a phototype VI pattern of melanin distribution. In vitro, human fibroblasts colonizing human dead de-epidermized dermis (DDD) induced a decrease in epidermal pigmentation whereas mouse (Swiss nu/nu) fibroblasts increased epidermal pigmentation. Conditioned medium from mice (Swiss nu/nu) fibroblasts also increased pigmentation whereas conditioned medium from human fibroblasts had no significant effect. Lastly, epidermal reconstructs made with normal or vitiligo keratinocytes and/or normal or vitiligo melanocytes from the same donor grown on DDD originating from several donors of the same clinical phototype did not pigment similarly and no specific dermal influence was noted for vitiligo. Thus, fibroblast secretion and acellular dermal connective tissue itself significantly influence melanocyte proliferation and melanin distribution/degradation. Our study suggests that murine fibroblasts are more potent than human fibroblasts in secreting soluble factors which can act directly on pigmentation, such as SCF, or activate keratinocytes to produce basement membrane proteins or melanogenic factors.  相似文献   

17.
In order to better understand how outer root sheath (ORS) cells are able to reepithelialize superficial skin wounds, the level of epidermal differentiation achieved by isolated ORS cells in vitro was determined. Using postmitotic human dermal fibroblasts (HDF) as efficient feeder cells, large numbers of ORS cells from individual follicles were generated. Passaged ORS cells were grown exposed to air on HDF-populated collagen gels in the CRD device (Noser and Limat, In vitro 23, 541-545, 1987) which allows histiotypic tissue organization. In such recombinant organotypic cultures, ORS cells developed distinct epidermal strata comparable to interfollicular keratinocytes (NEK). Ultrastructurally, desmosomes and intermediate filaments increased in number toward the epithelial surface and small keratohyalin (KH) granules (but no large irregular KH granules as in NEK) were abundant, adjacent to an electrondense stratum corneum. Also, synthesis of epidermal suprabasal keratins (K1 and 10;2D gels) was lower in ORS cultures, but clearly visible suprabasally by immunofluorescence along with other epidermal markers (involucrin, filaggrin, surface glycoprotein gp80, pemphigus vulgaris antigen). Basement membrane components (laminin, type IV collagen, bullous pemphigoid antigen) were detectable in both ORS and NEK in these assays. Thus, phenotypic expression was largely comparable, but, whereas terminal differentiation (keratinization) was progressing in NEK cultures limiting their lifespan, this seemed to be better controlled in ORS cultures and viable cell layers persisted resulting in longer survival time.  相似文献   

18.
We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 microM, 400 microl for 4 days) by 1.59+/-0.2-fold (p<0.05). ATRA treatment (10 microM) resulted in a 59.9+/-9.8% increase (p<0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.  相似文献   

19.
Many soft connective tissues are under endogenous tension, and their resident cells generate considerable contractile forces on the extracellular matrix. The present work was aimed to determine quantitatively how fibroblasts, grown within three-dimensional collagen lattices, respond mechanically to precisely defined tensional loads. Forces generated in response to changes in applied load were measured using a tensional culture force monitor. In a number of variant systems, resident cells consistently reacted to modify the endogenous matrix tension in the opposite direction to externally applied loads. That is, increased external loading was followed immediately by a reduction in cell-mediated contraction whilst decreased external loading elicited increased contraction. Responses were cell-mediated and not a result of material properties of the matrices. This is the first detailed characterisation of a tensional homeostatic response in cells. The maintained force, after 8 h in culture, was typically around 40–60 dynes/million cells. Maintenance of an active tensional homeostasis has widespread implications for cells in culture and forwhole tissue function. J. Cell. Physiol. 175:323–332, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号