首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis.   总被引:10,自引:0,他引:10  
In green plants, archaebacteria and many eubacteria, the porphyrin ring that is common to both chlorophyll and heme is synthesized from 5-aminolevulinic acid (ALA) via an interesting pathway. This two-step process involves the unusual enzymes glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase. Interest in this pathway has increased since it was discovered that a tRNA cofactor was required for the formation of ALA. This tRNA(Glu) is common to the biosyntheses of both porphyrins and proteins.  相似文献   

3.
In the first step of tetrapyrrole biosynthesis in Escherichia coli, glutamyl-tRNA reductase (GluTR, encoded by hemA) catalyzes the NADPH-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde. Soluble homodimeric E. coli GluTR was made by co-expressing the hemA gene and the chaperone genes dnaJK and grpE. During Mg(2+)-stimulated catalysis, the reactive sulfhydryl group of Cys-50 in the E. coli enzyme attacks the alpha-carbonyl group of the tRNA-bound glutamate. The resulting thioester intermediate was trapped and detected by autoradiography. In the presence of NADPH, the end product, glutamate-1-semialdehyde, is formed. In the absence of NADPH, E. coli GluTR exhibited substrate esterase activity. The in vitro synthesized unmodified glutamyl-tRNA was an acceptable substrate for E. coli GluTR. Eight 5-aminolevulinic acid auxotrophic E. coli hemA mutants were genetically selected, and the corresponding mutations were determined. Most of the recombinant purified mutant GluTR enzymes lacked detectable activity. Based on the Methanopyrus kandleri GluTR structure, the positions of the amino acid exchanges are close to the catalytic domain (G7D, E114K, R314C, S22L/S164F, G44C/S105N/A326T, G106N, S145F). Only GluTR G191D (affected in NADPH binding) revealed esterase but no reductase activity.  相似文献   

4.
In Escherichia coli the first common precursor of all tetrapyrroles, 5-aminolevulinic acid, is synthesized from glutamyl-tRNA (Glu-tRNA(Glu)) in a two-step reaction catalyzed by glutamyl-tRNA reductase (GluTR) and glutamate-1-semialdehyde 2,1-aminomutase (GSA-AM). To protect the highly reactive reaction intermediate glutamate-1-semialdehyde (GSA), a tight complex between these two enzymes was proposed based on their solved crystal structures. The existence of this hypothetical complex was verified by two independent biochemical techniques. Co-immunoprecipitation experiments using antibodies directed against E. coli GluTR and GSA-AM demonstrated the physical interaction of both enzymes in E. coli cell-free extracts and between the recombinant purified enzymes. Additionally, the formation of a GluTR.GSA-AM complex was identified by gel permeation chromatography. Complex formation was found independent of Glu-tRNA(Glu) and cofactors. The analysis of a GluTR mutant truncated in the 80-amino acid C-terminal dimerization domain (GluTR-A338Stop) revealed the importance of GluTR dimerization for complex formation. The in silico model of the E. coli GluTR.GSA-AM complex suggested direct metabolic channeling between both enzymes to protect the reactive aldehyde species GSA. In accordance with this proposal, side product formation catalyzed by GluTR was observed via high performance liquid chromatography analysis in the absence of the GluTR.GSA-AM complex.  相似文献   

5.
The initial reaction of tetrapyrrole formation in archaea is catalyzed by a NADPH-dependent glutamyl-tRNA reductase (GluTR). The hemA gene encoding GluTR was cloned from the extremely thermophilic archaeon Methanopyrus kandleri and overexpressed in Escherichia coli. Purified recombinant GluTR is a tetrameric enzyme with a native M(r) = 190,000 +/- 10,000. Using a newly established enzyme assay, a specific activity of 0.75 nmol h(-1) mg(-1) at 56 degrees C with E. coli glutamyl-tRNA as substrate was measured. A temperature optimum of 90 degrees C and a pH optimum of 8.1 were determined. Neither heme cofactor, nor flavin, nor metal ions were required for GluTR catalysis. Heavy metal compounds, Zn(2+), and heme inhibited the enzyme. GluTR inhibition by the newly synthesized inhibitor glutamycin, whose structure is similar to the 3' end of the glutamyl-tRNA substrate, revealed the importance of an intact chemical bond between glutamate and tRNA(Glu) for substrate recognition. The absolute requirement for NADPH in the reaction of GluTR was demonstrated using four NADPH analogues. Chemical modification and site-directed mutagenesis studies indicated that a single cysteinyl residue and a single histidinyl residue were important for catalysis. It was concluded that during GluTR catalysis the highly reactive sulfhydryl group of Cys-48 acts as a nucleophile attacking the alpha-carbonyl group of tRNA-bound glutamate with the formation of an enzyme-localized thioester intermediate and the concomitant release of tRNA(Glu). In the presence of NADPH, direct hydride transfer to enzyme-bound glutamate, possibly facilitated by His-84, leads to glutamate-1-semialdehyde formation. In the absence of NADPH, a newly discovered esterase activity of GluTR hydrolyzes the highly reactive thioester of tRNA(Glu) to release glutamate.  相似文献   

6.
Norflurazon (NF), a photobleaching herbicide, inhibits carotenoid biosynthesis. Lack of carotenoid pigments leads to photooxidative damage of chloroplasts. In this study of Arabidopsis thaliana we demonstrate that NF-treated photobleached plants are still able to make 5-aminolevulinic acid (ALA) the first precursor of porphyrins and tetrapyrroles. ALA is formed in the tRNA-dependent two-step C5-pathway in the chloroplast of plants. The expression of glutamyl-tRNA reductase (GluTR), the first enzyme in the pathway, was severely inhibited by NF, while treatment with this compound did not significantly reduce the levels of the other enzyme, glutamate-l-semialdehyde aminomutase, or of tRNA(Glu), the initial metabolite of the pathway. Extracts of these plants retained the capacity, albeit reduced, to convert exogenously added glutamate to ALA. Thus, the much-reduced level of ALA formation in photobleached plants is due to selective inhibition of GluTR expression.  相似文献   

7.
In plants, algae, and most bacteria, the heme and chlorophyll precursor 5-aminolevulinic acid (ALA) is formed from glutamate in a three-step process. First, glutamate is ligated to its cognate tRNA by glutamyl-tRNA synthetase. Activated glutamate is then converted to a glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR) in an NADPH-dependent reaction. Subsequently, GSA is rearranged to ALA by glutamate-1-semialdehyde aminotransferase (GSAT). The intermediate GSA is highly unstable under physiological conditions. We have used purified recombinant GTR and GSAT from the unicellular alga Chlamydomonas reinhardtii to show that GTR and GSAT form a physical and functional complex that allows channeling of GSA between the enzymes. Co-immunoprecipitation and sucrose gradient ultracentrifugation results indicate that recombinant GTR and GSAT enzymes specifically interact. In vivo cross-linking results support the in vitro results and demonstrate that GTR and GSAT are components of a high molecular mass complex in C. reinhardtii cells. In a coupled enzyme assay containing GTR and wild-type GSAT, addition of inactive mutant GSAT inhibited ALA formation from glutamyl-tRNA. Mutant GSAT did not inhibit ALA formation from GSA by wild-type GSAT. These results suggest that there is competition between wild-type and mutant GSAT for binding to GTR and channeling GSA from GTR to GSAT. Further evidence supporting kinetic interaction of GTR and GSAT is the observation that both wild-type and mutant GSAT stimulate glutamyl-tRNA-dependent NADPH oxidation by GTR.  相似文献   

8.
9.
The formation of delta-aminolevulinic acid, the first committed precursor of chlorophyll biosynthesis, occurs in the chloroplast of plants and algae by the C5-pathway, a three-step, tRNA-dependent transformation of glutamate. Previously, we reported the purification and characterization of the first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase from the green alga Chlamydomonas reinhardtii (Chen, M.-W., Jahn, D., Sch?n, A., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4054-4057 and Chen, M.-W., Jahn, D., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4058-4063). Here we present the purification of the third enzyme of the pathway, the glutamate-1-semialdehyde aminotransferase from C. reinhardtii. The enzyme was purified from the membrane fraction of a whole cell extract employing four different chromatographic separations. The apparent molecular mass of the protein was approximately 43,000 Da as analyzed by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by nondenaturing rate zonal sedimentation on glycerol gradients, and by gel filtration. By these criteria, the enzyme in its active form is a monomer of 43,000 Da. In the presence of pyridoxal 5'-phosphate, purified glutamate-1-semialdehyde aminotransferase converts synthetic glutamate 1-semialdehyde to delta-aminolevulinic acid. The enzyme is inhibited by gabaculine and aminooxyacetate, both typical inhibitors of aminotransferases. The purified glutamate-1-semialdehyde aminotransferase successfully reconstitutes the whole C5-pathway in vitro from glutamate in the presence of purified glutamyl-tRNA synthetase, glutamyl-tRNA reductase, Mg2+, ATP, NADPH, tRNA, and pyridoxal 5'-phosphate.  相似文献   

10.
An RNA moiety has been shown to be involved in the conversion of Glu to delta-aminolevulinic acid (ALA), the first committed intermediate of the chlorophyll pathway. We now have evidence suggesting that in Chlamydomonas, the first reaction for converting Glu to ALA is the aminoacylation of Glu to a Glu-specific tRNA. The Glu-tRNA thus formed could be the substrate for Glu-1-semialdehyde synthesis catalyzed by a postulated dehydrogenase. Glu-1-semialdehyde can be converted to ALA by an aminotransferase. Of the three reactions converting Glu to ALA, only the second reaction, catalyzed by a postulated dehydrogenase, is sensitive to inhibition by heme (a known inhibitor of ALA synthesis). We think the regulated enzyme of ALA synthesis is the postulated dehydrogenase. It is postulated that in the chloroplast of Chlamydomonas, the synthesis of ALA and the synthesis of proteins may share a common pool of glutamyl-tRNA.  相似文献   

11.
The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.  相似文献   

12.
Glutamate-1-semialdehyde 2,1-aminomutase (GSAM) is the second enzyme in the C(5) pathway of tetrapyrrole biosynthesis found in most bacteria, in archaea and in plants. It catalyzes the transamination of glutamate-1-semialdehyde to 5-aminolevulinic acid (ALA) in a pyridoxal 5'-phosphate (PLP)-dependent manner. We present the crystal structure of GSAM from the thermophilic cyanobacterium Thermosynechococcus elongatus (GSAM(Tel)) in its PLP-bound form at 2.85A resolution. GSAM(Tel) is a symmetric homodimer, whereas GSAM from Synechococcus (GSAM(Syn)) has been described as asymmetric. The symmetry of GSAM(Tel) thus challenges the previously proposed negative cooperativity between monomers of this enzyme. Furthermore, GSAM(Tel) reveals an extensive flexible region at the interface of the proposed complex of GSAM with glutamyl-tRNA reductase (GluTR), the preceding enzyme in tetrapyrrole biosynthesis. Compared to GSAM(Syn), the monomers of GSAM(Tel) are rotated away from each other along the dimerization interface by 10 degrees . The associated flexibility of GSAM may be essential for complex formation with GluTR to occur. Unexpectedly, we find that GSAM is structurally related to 5-aminolevulinate synthase (ALAS), the ALA-producing enzyme in the Shemin pathway of alpha-proteobacteria and non-plant eukaryotes. This structural relationship applies also to the corresponding subfamilies of PLP-dependent enzymes. We thus propose that the CoA-subfamily (including ALAS) and the aminotransferase subfamily II (including GSAM) are evolutionarily closely related and that ALAS may thus have evolved from GSAM.  相似文献   

13.
14.
delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. To characterize the GTR protein, the hemA gene from C. vibrioforme was cloned into expression plasmids that added an N-terminal His(6) tag to the expressed protein. The His-tagged GTR protein was purified using Ni affinity column chromatography. GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer. However, when the protein was mixed with 5% (vol/vol) glycerol, the product had an apparent molecular mass of 95 kDa, indicating that the protein is a dimer under these conditions. Purified His(6)-GTR was catalytically active in vitro when it was incubated with Escherichia coli glutamyl-tRNA(Glu) and purified recombinant Chlamydomonas reinhardtii glutamate-1-semialdehyde aminotransferase. The expressed GTR contained 1 mol of tightly bound heme per mol of pep tide subunit. The heme remained bound to the protein throughout purification and was not removed by anion- or cation-exchange column chromatography. However, the bound heme was released during SDS-PAGE if the protein was denatured in the presence of beta-mercaptoethanol. Added heme did not inhibit the activity of purified expressed GTR in vitro. However, when the GTR was expressed in the presence of 3-amino-2,3- dihydrobenzoic acid (gabaculine), an inhibitor of heme synthesis, the purified GTR had 60 to 70% less bound heme than control GTR, and it was inhibited by hemin in vitro.  相似文献   

15.
Glu-tRNA is either bound to elongation factor Tu to enter protein synthesis or is reduced by glutamyl-tRNA reductase (GluTR) in the first step of tetrapyrrole biosynthesis in most bacteria, archaea and in chloroplasts. Acidithiobacillus ferrooxidans, a bacterium that synthesizes a vast amount of heme, contains three genes encoding tRNA(Glu). All tRNA(Glu) species are substrates in vitro of GluRS1 from A. ferrooxidans.Glu-tRNA(3)(Glu), that fulfills the requirements for protein synthesis, is not substrate of GluTR. Therefore, aminoacylation of tRNA(3)(Glu) might contribute to ensure protein synthesis upon high heme demand by an uncoupling of protein and heme biosynthesis.  相似文献   

16.
D Jahn 《FEBS letters》1992,314(1):77-80
The formation of a stable complex between glutamyl-tRNA synthetase and the first enzyme of chlorophyll biosynthesis glutamyl-tRNA reductase was investigated in the green alga Chlamydomonas reinhardtii. Apparently homogenous enzymes, purified after previously established purification protocols were incubated in various combinations with ATP, glutamate, tRNA(Glu) and NADPH and formed complexes were isolated via glycerol gradient centrifugation. Stable complexes were detected only after the preincubation of glutamyl-tRNA synthetase, glutamyl-tRNA reductase with either glutamyl-tRNA or free tRNA(Glu), ATP and glutamate, indicating the obligatory requirement of aminoacylated tRNA(Glu) for complex formation. The further addition of NADPH resulting in the reduction of the tRNA-bound glutamate to glutamate 1-semialdehyde led to the dissociation of the complex. Once complexed to the two enzymes tRNA(Glu) was found to be partially protected from ribonuclease digestion. Escherichia coli, Bacillus subtilis and Synechocystis 6803 tRNA(Glu) were efficiently incorporated into the protein-RNA complex. The detected complexes provide the chloroplast with a potential channeling mechanism for Glu-tRNA(Glu) into chlorophyll synthesis in order to compete with the chloroplastic protein synthesis machinery.  相似文献   

17.
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.Abbreviations ALA 5-aminolevulinic acid - ALAS 5-aminolevulinic acid synthase - GR glutamyl-tRNA reductase - GSA glutamate-1-semialdehyde - GSAT glutamate-1-semialdehyde aminotransferase - HMB hydroxymethylbilane - PBG porphobilinogen - PBGD porphobilinogen deaminase - PBGS porphobilinogen synthase - URO uroporphyrin - URO'gen uroporphyrinogen - US uroporphyrinogen III synthase  相似文献   

18.
Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803   总被引:4,自引:0,他引:4  
delta-Aminolevulinic acid is the universal precursor for all tetrapyrroles including hemes, chlorophylls, and bilins. In plants, algae, cyanobacteria, and many other bacteria, delta-aminolevulinic acid is synthesized from glutamate in a reaction sequence that requires three enzymes, ATP, NADPH, and tRNA(Glu). The three enzymes have been characterized as glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde aminotransferase. All three enzymes have been separated and partially characterized from plants and algae. In prokaryotic phototrophs, only the glutamyl-tRNA synthetase and glutamate-1-semialdehyde aminotransferase have been decribed. We report here the purification and some properties of the glutamyl-tRNA reductase from extracts of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. The glutamyl-tRNA reductase has been purified over 370-fold to apparent homogeneity. Its native molecular mass was determined to be 350 kDa by glycerol density gradient centrifugation, and its subunit size was estimated to be 39 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was determined for 42 residues. Much higher activity occurred with NADPH than with NADH as the reduced pyridine nucleotide substrate. Half-maximal rates occurred at 5 microM NADPH, whereas saturation was not reached even at 10 mM NADH. Purified Synechocystis glutamyl-tRNA reductase was inhibited 50% by 5 microM heme. Activity was unaffected by 10 microM 3-amino-2,3-dihydrobenzoic acid. No flavin, pyridine nucleotide, or other light-absorbing prosthetic group was detected on the purified enzyme. The catalytic turnover number of purified Synechocystis glutamyl-tRNA reductase is comparable to those of prokaryotic and plastidic glutamyl-tRNA synthetases.  相似文献   

19.
Chang TE  Wegmann B  Wang WY 《Plant physiology》1990,93(4):1641-1649
Chlorophyll biosynthesis starts with the synthesis of glutamyl-tRNA (glu-tRNA) by a glutamyl-tRNA synthetase (Glu RS). The glu-tRNA is subsequently transformed to δ-aminolevulinic acid (ALA), which is a committed and regulated precursor in the chlorophyll biosynthetic pathway. The Glu RS from a green alga, Chlamydomonas reinhardtii, was purified and shown to be able to synthesize glu-tRNA and to participate in ALA synthesis in a coupled enzyme assay. Physical and chemical characterization of the purified Glu RS indicated that the enzyme had been purified to homogeneity. The purified enzyme has a native molecular weight of 60,000, an isoelectric point of 4.6, and it formed a single band of 32,500 daltons when analyzed by a silver stained denaturing gel. The N-terminal amino acid sequence of the 32,500 dalton protein was determined to be Asn-Lys-Val-Ala-Leu-Leu-Gly-Ala-Ala-Gly. The molecular weight analyses together with the unambiguous N-terminal amino acid sequence obtained from the purified enzyme suggested that the native enzyme was composed of two identical subunits. Polyclonal antibodies raised against the purified and denatured enzyme were able to inhibit the activity of the native enzyme and to interact specifically with the 32,500 dalton band on Western blots. Thus, the antibodies provided an additional linkage for the structural and functional identities of the enzyme. In vitro experiments showed that over 90% of the glu RS activity was inhibited by 5 micromolar heme, which suggested that Glu RS may be a regulated enzyme in the chlorophyll biosynthetic pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号