首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined the effects of diabetes and gender on the physical properties of the vasculature in streptozotocin (STZ)-treated rats based on the aortic input impedance analysis. Rats given STZ 65 mg/kg i.v. were compared with untreated age-matched controls. Pulsatile aortic pressure and flow signals were measured and were then subjected to Fourier transformation for the analysis of aortic input impedance. Wave transit time was determined using the impulse response function of the filtered aortic input impedance spectra. Male but not female diabetic rats exhibited an increase in cardiac output in the absence of any significant changes in arterial blood pressure, resulting in a decline in total peripheral resistance. However, in each gender group, diabetes contributed to an increase in wave reflection factor, from 0.47 +/- 0.04 to 0.84 +/- 0.03 in males and from 0.46 +/- 0.03 to 0.81 +/- 0.03 in females. Diabetic rats had reduced wave transit time, at 18.82 +/- 0.60 vs 21.34 +/- 0.51 msec in males and at 19.63 +/- 0.37 vs 22.74 +/- 0.57 msec in females. Changes in wave transit time and reflection factor indicate that diabetes can modify the timing and magnitude of the wave reflection in the rat arterial system. Meanwhile, diabetes produced a fall in aortic characteristic impedance from 0.023 +/- 0.002 to 0.009 +/- 0.001 mmHg/min/kg/ml in males and from 0.028 +/- 0.002 to 0.014 +/- 0.001 mmHg/min/kg/ml in females. With unaltered aortic pressure, both the diminished aortic characteristic impedance and wave transit time suggest that the muscle inactivation in diabetes may occur in aortas and large arteries and may cause a detriment to the aortic distensibility in rats with either sex. We conclude that only rats with male gender diabetes produce a detriment to the physical properties of the resistance arterioles. In spite of male or female gender, diabetes decreases the aortic distensibility and impairs the wave reflection phenomenon in the rat arterial system.  相似文献   

2.
Fructose has been reported as a potent agent in forming advanced glycation end products (AGEs) and, thus, may play a significant role in the pathogenesis of diabetic complications. Herein, we determined the effects of aminoguanidine (AG), an inhibitor of AGEs, on the mechanical properties of the arterial system in fructose-fed (FF) rats, using aortic impedance analysis. Rats at 2 months were given 10% fructose in drinking water for 2 weeks and compared with untreated age-matched controls. Meanwhile, FF rats were treated for 2 weeks with AG (daily peritoneal injections of 50 mg kg(-1)) and compared with the untreated FF group. Neither fructose nor AG affects body weight, blood glucose level, and basal heart rate. In comparison with controls, FF rats showed a decrease in cardiac output in the absence of any significant changes in mean aortic pressure, having increased total peripheral resistance (R(p)), at 51.1 +/- 2.9 versus 66.2 +/- 1.9 mm Hg sec ml(-1) (P < 0.05). Fructose also contributed to an increase in aortic characteristic impedance (Z(c)), from 1.528 +/- 0.094 to 1.933 +/- 0.084 mm Hg sec ml (-1) (P < 0.05) and a decrease in wave transit time (tau), from 22.6 +/- 0.6 to 19.2 +/- 0.7 msec (P < 0.05). The elevated Z(c) and the reduced tau suggest that fructose may cause a detriment to the aortic distensibility in animals. After exposure to AG, FF rats exhibited a significant improvement in physical properties of the resistance vessels, as evidenced by the reduction of 21.3% in R(p). Meanwhile, AG retarded the fructose-induced decline in aortic distensibility, as reflected in the decrease of 16.0% in Z(c) (P < 0.05) and the increase of 18.1% in tau (P < 0.05). By contrast, AG exerted no effects on the mechanical properties of Windkessel vessels, as well as resistance vessels, in normal diet controls. We conclude that AG may prevent the fructose-derived changes in arterial stiffening, possibly through inhibition of the fructose-derived advanced glycation end product formation in Wistar rats.  相似文献   

3.
We determined the roles of maximal systolic elastance (E(max)) and theoretical maximum flow ((max)) in the regulation of cardiac pumping function in early streptozotocin (STZ)-diabetic rats. Physically, E(max) can reflect the intrinsic contractility of the myocardium as an intact heart, and (max) has an inverse relation to the systolic resistance of the left ventricle. Rats given STZ 65 mg/kg i.v. (n = 17) were divided into two groups, 1 week and 4 weeks after induction of diabetes, and compared with untreated age-matched controls (n = 15). Left ventricular (LV) pressure and ascending aortic flow signals were recorded to calculate E(max) and (max), using the elastance-resistance model. After 1 or 4 weeks, STZ-diabetic animals show an increase in effective LV end-diastolic volume (V(eed)), no significant change in peak isovolumic pressure (P(iso)(max)), and a decline in effective arterial volume elastance (E(a)). The maximal systolic elastance E(max) is reduced from 751.5 +/- 23.1 mmHg/ml in controls to 514.1 +/- 22.4 mmHg/ml in 1- and 538.4 +/- 33.8 mmHg/ml in 4-week diabetic rats. Since E(max) equals P(iso)(max)/V(eed), an increase in V(eed) with unaltered P(iso)(max) may primarily act to diminish E(max) so that the intrinsic contractility of the diabetic heart is impaired. By contrast, STZ-diabetic rats have higher theoretical maximum flow (max) (40.9 +/- 2.8 ml/s in 1- and 44.5 +/- 3.8 ml/s in 4-week diabetic rats) than do controls (30.7 +/- 1.7 ml/s). There exists an inverse relation between (max) and E(a) when a linear regression of (max) on E(a) is performed over all animals studied (r = 0.65, p < 0.01). The enhanced (max) is indicative of the decline in systolic resistance of the diabetic rat heart. The opposing effects of enhanced (max) and reduced E(max) may negate each other, and then the cardiac pumping function of the early STZ-diabetic rat heart could be preserved before cardiac failure occurs.  相似文献   

4.
Yu T  Khraibi AA 《Life sciences》2008,83(9-10):364-368
The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure, fluid and electrolyte homeostasis. The RAS is activated and renal interstitial hydrostatic pressure (RIHP) is decreased in diabetic rats. The objective of this study was to evaluate the roles of proximal tubule reabsorption and RAS in the decreased RIHP and blunted natriuretic and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Enalapril was utilized to inhibit angiotensin II (AII) formation. Diabetes mellitus (DM) was induced by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 65 mg/kg). RIHP was measured by a polyethylene (PE) matrix that was chronically implanted in the left kidney. Fractional excretion of phosphate (FE(Pi)) and fractional excretion of lithium (FE(Li)) were used as indexes for proximal tubule reabsorption. VE significantly increased both FE(Li) and FE(Pi) in all groups of rats studied. However, the increase in FE(Li) (DeltaFE(Li)=17.26+/-3.83%) and FE(Pi) (DeltaFE(Pi)=7.38+/-2.37%) in diabetic rats (DC, n=12) were significantly lower as compared with those in nondiabetic control rats (NC, n=8; DeltaFE(Li)=32.15+/-4.71% and DeltaFE(Pi)=20.62+/-3.27%). The blunted increases in FE(Li) and FE(Pi) were associated with an attenuated increase in RIHP (DeltaRIHP) in DC (1.8+/-0.4 mm Hg) compared with NC rats (4.3+/-0.3 mm Hg). Enalapril treatment (25 mg/kg/day in drinking water) had no effect on nondiabetic rats (NE, n=8) as compared with untreated NC rats, but significantly improved RIHP response (DeltaRIHP) to VE in diabetic rats (DE, n=9; 2.8+/-0.5 mm Hg). Both DeltaFE(Li) and DeltaFE(Pi) were restored by enalapril treatment in diabetic rats and no significant differences were found in DeltaFE(Li) and DeltaFE(Pi) between DE (DeltaFE(Li)=26.81+/-4.94% and DeltaFE(Pi)=10.45+/-4.67%) and NC groups of rats in response to VE. These data suggest that the activated RAS and the decrease in RIHP may play an important role in the increased proximal tubule reabsorption, and the attenuated natriuretic and diuretic responses to acute volume expansion in diabetic rats.  相似文献   

5.
We determined the acute effects of methoxamine, a specific alpha1-selective adrenoceptor agonist, on the left ventricular-arterial coupling in streptozotocin (STZ)-diabetic rats, using the end-systolic pressure-stroke volume relationships. Rats given STZ 65 mg x kg(-1) iv (n = 8) were compared with untreated age-matched controls (n = 8). A high-fidelity pressure sensor and an electromagnetic flow probe measured left ventricular (LV) pressure and ascending aortic flow, respectively. Both LV end-systolic elastance E(LV,ES) and effective arterial elastance Ea were estimated from the pressure-ejected volume loop. The optimal afterload Q(load) determined by the ratio of Ea to E(LV,ES) was used to measure the optimality of energy transmission from the left ventricle to the arterial system. In comparison with controls, diabetic rats had decreased LV end-systolic elastance E(LV,ES), at 513 +/- 30 vs. 613 +/- 29 mmHg x mL(-1), decreased effective arterial elastance Ea, at 296 +/- 20 vs. 572 +/- 48 mmHg x mL(-1), and decreased optimal afterload Q(load), at 0.938 +/- 0.007 vs. 0.985 +/- 0.009. Methoxamine administration to STZ-diabetic rats significantly increased LV end-systolic elastance E(LV,ES), from 513 +/- 30 to 602 +/- 38 mmHg x mL(-1), and effective arterial elastance Ea, from 296 +/- 20 to 371 +/- 28 mmHg x mL(-1), but did not change optimal afterload Q(load). We conclude that diabetes worsens not only the contractile function of the left ventricle, but also the matching condition for the left ventricular-arterial coupling. In STZ-diabetic rats, administration of methoxamine improves the contractile status of the ventricle and arteries, but not the optimality of energy transmission from the left ventricle to the arterial system.  相似文献   

6.
We used the partial protection exerted by suitable dosages of nicotinamide against the beta-cytotoxic effect of streptozotocin (STZ) to create an experimental diabetic syndrome in adult rats that appears closer to type II diabetes mellitus than other available animal models. The dosage of 230 mg/kg of nicotinamide given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded animals with hyperglycemia (187.8 +/- 17.8 vs. 103.8 +/- 2.8 mg/dL in controls; P < 0.001) and preservation of plasma insulin levels. This study assessed the relationship between endothelial dysfunction and agonist-induced contractile responses in such rats. In the thoracic aorta, the acetylcholine (ACh) induced relaxation was significantly reduced and the noradrenaline (NA) induced contractile response was significantly increased in diabetic rats compared with age-matched control rats. In the superior mesenteric artery, the ACh-induced relaxation was similar in magnitude between diabetic and age-matched control rats; however, the ACh-induced endothelium-derived hyperpolarizing factor (EDHF) type relaxation was significantly weaker in diabetic rats than in the controls. The phenylephrine (PE) induced contractile response was not different between the two groups. The plasma concentration of NOx (NO2- + NO3-) was significantly lower in diabetic rats than in control rats. We conclude that vasomotor activities in conduit arteries are impaired in this type II diabetes model.  相似文献   

7.
The activities of Na-K-ATPase and Na-K-2Cl cotransporter (NKCC1) were studied in the aorta, heart, and skeletal muscle of streptozotocin (STZ)-induced diabetic rats and control rats. In the aortic rings of STZ rats, the Na-K-ATPase-dependent (86)Rb/K uptake was reduced to 60.0 +/- 5.5% of the control value (P < 0.01). However, Na-K-ATPase activity in soleus skeletal muscle fibers of STZ rats and paired control rats was similar, showing that the reduction of Na-K-ATPase activity in aortas of STZ rats is tissue specific. To functionally distinguish the contributions of ouabain-resistant (alpha(1)) and ouabain-sensitive (alpha(2) and alpha(3)) isoforms to the Na-K-ATPase activity in aortic rings, we used either a high (10(-3) M) or a low (10(-5) M) ouabain concentration during (86)Rb/K uptake. We found that the reduction in total Na-K-ATPase activity resulted from a dramatic decrement in ouabain-sensitive mediated (86)Rb/K uptake (26.0 +/- 3.9% of control, P < 0.01). Western blot analysis of membrane fractions from aortas of STZ rats demonstrated a significant reduction in protein levels of alpha(1)- and alpha(2)-catalytic isoforms (alpha(1) = 71.3 +/- 9.8% of control values, P < 0.05; alpha(2) = 44.5 +/- 11.3% of control, P < 0.01). In contrast, aortic rings from the STZ rats demonstrated an increase in NKCC1 activity (172.5 +/- 9.5%, P < 0.01); however, in heart tissue no difference in NKCC1 activity was seen between control and diabetic animals. Transport studies of endothelium-denuded or intact aortic rings demonstrated that the endothelium stimulates both Na-K-ATPase and Na-K-2Cl dependent (86)Rb/K uptake. The endothelium-dependent stimulation of Na-K-ATPase and Na-K-2Cl was not hampered by diabetes. We conclude that abnormal vascular vessel tone and function, reported in STZ-induced diabetic rats, may be related to ion transport abnormalities caused by changes in Na-K-ATPase and Na-K-2Cl activities.  相似文献   

8.
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg(-1), I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg(-1) urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 +/- 2.42 mg dl(-1) (n = 44) and >500 mg dl(-1) (n = 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 +/- 0.05 ul min(-1) (n = 10) and 1.28 +/- 0.16 ul min(-1) (n = 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 +/- 15.41 nM (n = 15) and 130.62 +/- 17.66 nM (n = 8), respectively. CCK-8 (10(-8)M) induced a peak response of 436.55 +/- 36.54 nM (n = 15) and 409.31 +/- 34.64 nM (n = 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 +/- 0.06 nM (n = 18) and 0.86 +/- 0.04 nM (n = 10). In the presence of CCK-8 (10(-8)) [Mg2+]i in control and diabetic cells was 0.80 +/- 0.05 nM (n = 18) and 0.60 +/- 0.02 nM (n = 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis.  相似文献   

9.
Vitamin E treatment has been found to be beneficial in preventing or reducing diabetic nephropathy. Increased tissue calcium and abnormal microsomal Ca(2+)-ATPase activity have been suggested as contributing factors in the development of diabetic nephropathy. This study was undertaken to test the hypothesis that vitamin E reduces lipid peroxidation and can prevent the abnormalities in microsomal Ca(2+)-ATPase activity and calcium levels in kidney of streptozotocin (STZ)-induced diabetic rats. Male rats were rendered diabetic by a single STZ injection (55 mg x kg(-1) i.p.). After diabetes was verified, diabetic and age-matched control rats were untreated or treated with vitamin E (400-500 IU kg(-1) x day(-1), orally) for 10 weeks. Ca(2+)-ATPase activity and lipid peroxidation (MDA) were determined spectrophotometrically. Blood glucose levels increased approximately five-fold (> 500 mg x dl(-1)) in untreated-diabetic rats but decreased to 340+/-27 mg x dl(-1) in the vitamin E treated-diabetic group. Kidney MDA levels did not significantly change in the diabetic state. However, vitamin E treatment markedly inhibited MDA levels in both control and diabetic animals. Ca(2+)-ATPase activity was 0.483+/-0.008 U l(-1) in the control group and significantly increased to 0.754+/-0.010 U l(-1) in the STZ-diabetic group (p < 0.001). Vitamin E treatment completely prevented the diabetes-induced increase in Ca(2+)-ATPase activity (0.307+/-0.025 U l(-1), p < 0.001) and also reduced the enzyme activity in normal control rats. STZ-diabetes resulted in approximately two-fold increase in total calcium content of kidney. Vitamin E treatment led to a significant reduction in kidney calcium levels of both control and diabetic animals (p < 0.001). Thus, vitamin E treatment can lower blood glucose and lipid peroxidation, which in turn prevents the abnormalities in kidney calcium metabolism of diabetic rats. This study describes a potential biochemical mechanism by which vitamin E supplementation may delay or inhibit the development of cellular damage and nephropathy in diabetes.  相似文献   

10.
Lung structural changes and immunoreactivity of endothelial (eNOS)- and inducible nitric oxide synthase (iNOS) were investigated by light microscopy in lungs of treated and untreated diabetic rats. Diabetes was induced by a single intraperitoneal (i.p.) injection of 65 mg kg(-1) streptozotocin (STZ) in Wistar albino male rats. Diabetic rats received daily i.p. doses of dexamethasone (2 mg kg(-1)), leptin (0.5 microg kg(-1)) and intramuscular insulin (20 U kg(-1)) or a combination of these drugs for 1 week starting 4 weeks after the STZ injections. After treatment, the blood levels of glucose, leptin, insulin and nitrate/nitrite (NO(3) (-)/NO(2) (-)) were measured. Dilatation of alveoli and alveolar ducts, partial alveolar wall thickening and increased eNOS- and iNOS characterized the diabetic rat lungs. High blood glucose and nitrate/nitrite levels as well as low insulin and leptin levels were also present. Treatment with insulin, dexamethasone and a combination of these drugs resulted in improvement of the structural and immunohistochemical abnormalities. The most effective treatment was insulin therapy. Leptin administration resulted in increased relative amounts of extracellular material, which led to noticeable respiratory efficiency in the diabetic rat lungs. All treatments except leptin lowered blood glucose levels. The combination of insulin and dexamethasone increased blood leptin and insulin, while the remaining diabetic rats had blood with low leptin and insulin concentrations. These results suggest that therapy with insulin plus dexamethasone but not therapy with leptin is beneficial for diabetics.  相似文献   

11.
We examined the effect of methanol/methylene chloride extract of Dorstenia psilurus given by gastric intubation on systolic blood pressure, plasma glucose, insulin, cholesterol, triglycerides and creatinine in rats with fructose-induced hypertension. Male Wistar rats in groups of 6 animals each were fed fructose-rich diets or standard chow for 3 weeks and treated with 100 mg/kg/day or 200 mg/kg/day of plant extract or vehicle for 3 subsequent weeks. Systolic blood pressure was measured every three days using the indirect tail cuff method. Systolic blood pressure was higher in fructose-fed rats (142+/-2 mm Hg, p < 0.01) compared with the controls (112+/-2 mm Hg), and was lower in Dorstenia psilurus-treated groups (127+/-2 and 119+/-1 mm Hg for the dose of 100 and 200 mg/kg, respectively) compared with the fructose-fed rats. Plasma insulin, cholesterol and triglycerides were higher on the fructose-rich diet compared with the controls. Plasma insulin and cholesterol were lower in the Dorstenia psilurus-treated groups. These results suggest that, Dorstenia psilurus treatment could prevent and reverse high blood pressure induced by a diet rich in fructose probably by improvement of plasma insulin levels. The plant extract might prove useful in the treatment and/or prevention of hypertension.  相似文献   

12.
Leptin produces effects in central nervous system and peripheral tissues via its specific receptors. Leptin also stimulates nitric oxide release in a concentration-dependent manner. In this study, our aim was to test the hypothesis that whether leptin has a modulatory role on endothelium or smooth muscle function in streptozotocin (STZ)-induced diabetic rats. Wistar-Albino rats were divided into four groups: 1 – Control, 2 – Diabetic, 3 – Control + leptin and 4 – Diabetic + leptin. Experimental diabetes was produced by intraperitoneal injection of a single dose of STZ (55 mg/kg). Diabetes was determined by increased fasting blood glucose level on the 7th day of the experiment. Leptin (0.1 mg/kg/day) was administered intraperitoneally for 5 days. At the end of the 5th day, thoracic aortas were isolated and phenylephrine (Phe)-induced contractions and acetylcholine (ACh)-induced relaxations of each group were estimated. In diabetic rats, Phe-induced contractility was increased (p < 0.05). Leptin pre-treatment increased the Phe-induced contractility significantly in aortic rings obtained from diabetic rats (p < 0.05). In normal rats, leptin administration produced only a slight and non-significant increase in Phe-induced contractions. Although the relaxant responses were decreased in diabetic rats, leptin administration enhanced the ACh-induced relaxation in both normal and diabetic animals significantly. As a conclusion; chronic leptin pre-treatment caused a significant increase both in Phe-induced contractions and ACh-induced Endothelial-Derived Relaxing Factor (EDRF)/Nitric oxide-mediated relaxations in the aortic rings isolated from streptozotocin-induced diabetic rats. This peptide hormone caused a significant increase in the relaxations obtained by ACh while not inducing a significant alteration in the contractile effect of Phe in control rats.  相似文献   

13.
Diabetic cardiomyopathy is characterized by impaired ventricular contraction and altered function of insulin-like growth factor I (IGF-I), a key factor for cardiac growth and function. Endogenous IGF-I has been shown to alleviate diabetic cardiomyopathy. This study was designed to evaluate exogenous IGF-I treatment on the development of diabetic cardiomyopathy. Adult rats were divided into four groups: control, control + IGF-I, diabetic, and diabetic + IGF-I. Streptozotocin (STZ; 55 mg/kg) was used to induce experimental diabetes immediately followed by a 7-wk IGF-I (3 mg. kg(-1). day(-1) ip) treatment. Mechanical properties were assessed in ventricular myocytes including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)) and maximal velocities of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) transients were evaluated as Ca(2+)-induced Ca(2+) release and Ca(2+) clearing constant. Levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and glucose transporter (GLUT4) were assessed by Western blot. STZ caused significant weight loss and elevated blood glucose, demonstrating the diabetic status. The diabetic state is associated with reduced serum IGF-I levels, which were restored by IGF-I treatment. Diabetic myocytes showed reduced PS and +/-dL/dt as well as prolonged TPS, TR(90), and intracellular Ca(2+) clearing compared with control. IGF-I treatment prevented the diabetes-induced abnormalities in PS, +/-dL/dt, TR(90), and Ca(2+) clearing but not TPS. The levels of SERCA and GLUT4, but not PLB, were significantly reduced in diabetic hearts compared with controls. IGF-I treatment restored the diabetes-induced decline in SERCA, whereas it had no effect on GLUT4 and PLB levels. These results suggest that exogenous IGF-I treatment may ameliorate contractile disturbances in cardiomyocytes from diabetic animals and could provide therapeutic potential in the treatment of diabetic cardiomyopathy.  相似文献   

14.
The JAK/STAT pathway is activated in vitro by angiotensin II (ANG II) and endothelin-1 (ET-1), which are implicated in the development of diabetic complications. We hypothesized that ANG II and ET-1 activate the JAK/STAT pathway in vivo to participate in the development of diabetic vascular complications. Using male Sprague-Dawley rats, we performed a time course study [days 7, 14, and 28 after streptozotocin (STZ) injection] to determine changes in phosphorylation of JAK2, STAT1, and STAT3 in thoracic aorta using standard Western blot techniques. On day 7 there was no change in phosphorylation of JAK2, STAT1, and STAT3. Phosphorylation of JAK2, STAT1, and STAT3 was significantly increased on days 14 and 28 and was inhibited by treatment with candesartan (AT(1) receptor antagonist, 10 mg x kg(-1) x day(-1) orally in drinking water), atrasentan (ET(A) receptor antagonist, 10 mg x kg(-1) x day(-1) orally in drinking water), and AG-490 (JAK2 inhibitor, 5 mg x kg(-1) x day(-1) intraperitoneally). On day 28, treatment with all inhibitors prevented the significant increase in systolic blood pressure (SBP; tail cuff) of STZ-induced diabetic rats (SBP: 157 +/- 9.0, 130 +/- 3.3, 128 +/- 6.8, and 131 +/- 10.4 mmHg in STZ, STZ-candesartan, STZ-atrasentan, and STZ-AG-490 rats, respectively). In isolated tissue bath studies, diabetic rats displayed impaired endothelium-dependent relaxation in aorta (maximal relaxation: 95.3 +/- 3.0, 92.6 +/- 7.4, 76.9 +/- 12.1, and 38.3 +/- 13.1% in sham, sham + AG-490, STZ + AG-490, and STZ rats, respectively). Treatment of rats with AG-490 restored endothelium-dependent relaxation in aorta from diabetic rats at 14 and 28 days of treatment. These results demonstrate that JAK2 activation in vivo participates in the development of vascular complications associated with STZ-induced diabetes.  相似文献   

15.
Chronic hypoxia causes pulmonary hypertension, the mechanism of which includes altered collagen metabolism in the pulmonary vascular wall. This chronic hypoxic pulmonary hypertension is gradually reversible upon reoxygenation. The return to air after the adjustment to chronic hypoxia resembles in some aspects a hyperoxic stimulus and we hypothesize that the changes of extracellular matrix proteins in peripheral pulmonary arteries may be similar. Therefore, we studied the exposure to moderate chronic hyperoxia (FiO2 = 0.35, 3 weeks) in rats and compared its effects on the rat pulmonary vasculature to the effects of recovery (3 weeks) from chronic hypoxia (FiO2 = 0.1, 3 weeks). Chronically hypoxic rats had pulmonary hypertension (Pap = 26 +/- 3 mm Hg, controls 16 +/- 1 mm Hg) and right ventricular hypertrophy. Pulmonary arterial blood pressure and right ventricle weight normalized after 3 weeks of recovery in air (Pap = 19 +/- 1 mm Hg). The rats exposed to moderate chronic hyperoxia also did not have pulmonary hypertension (Pap = 18 +/- 1 mm Hg, controls 17 +/- 1 mm Hg). Collagenous proteins isolated from the peripheral pulmonary arteries (100-300 microm) were studied using polyacrylamide gel electrophoresis. A dominant low molecular weight peptide (approx. 76 kD) was found in hypoxic rats. The proportion of this peptide decreases significantly in the course of recovery in air. In addition, another larger peptide doublet was found in rats recovering from chronic hypoxia. It was localized in polyacrylamide gels close to the zone of alpha2 chain of collagen type I. It was bound to anticollagen type I antibodies. An identically localized peptide was found in rats exposed to moderate chronic hyperoxia. The apparent molecular weight of this collagen fraction suggests that it is a product of collagen type I cleavage by a rodent-type interstitial collagenase (MMP-13). We conclude that chronic moderate hyperoxia and recovery from chronic hypoxia have a similar effect on collagenous proteins of the peripheral pulmonary arterial wall.  相似文献   

16.
This study examined the effect of intracerebroventricular leptin on insulin sensitivity in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were cannulated in the lateral ventricle and, after recovery, administered either intravenous STZ (50 mg/kg) to induce diabetes or citrate buffer. Chronic leptin (10 microg/10 microl icv) or vehicle injections were administered daily for 14 days beginning 2 days after establishment of hyperglycemia in the diabetic animals. At the end of the 2 wk of injections, insulin sensitivity was measured by the steady-state plasma glucose (SSPG) method. Blood glucose concentrations were dramatically reduced and normalized by the 4th day in diabetic animals receiving intracerebroventricular leptin treatment. Diabetic animals exhibited insulin resistance, whereas intracerebroventricular leptin significantly enhanced insulin sensitivity, as indicated by decreased SSPG. Circulating leptin levels were not increased in animals injected with intracerebroventricular leptin. Thus the increased peripheral insulin sensitivity appears to be due solely to the presence of leptin in the brain, not to leptin acting peripherally. These data imply that inadequate central leptin signaling may lead to insulin resistance.  相似文献   

17.
In this work we determined by telemetry the cardiovascular effects produced by Ang II infusion on blood pressure (BP) and heart rate (HR) in aged rats. Male Wistar aged (48-52 weeks) and young (12 weeks) rats were used. Ang II (6 microg/h, young, n=6; aged, n=6) or vehicle (0.9% NaCl 1 microl/h, young, n=4; aged, n=5) were infused subcutaneously for 7 days, using osmotic mini-pump. The basal diurnal and nocturnal BP values were higher in aged rats (day: 98+/-0.3 mm Hg, night: 104+/-0.4 mm Hg) than in the young rats (day: 92+/-0.2 mm Hg, night: 99+/-0.2 mm Hg). In contrast, the basal diurnal and nocturnal HR values were significantly smaller in the aged rats. Ang II infusion produced a greater increase in the diurnal BP in the aged rats (Delta MAP=37+/-1.8 mm Hg) compared to the young ones (Delta MAP=30+/-3.5 mm Hg). In contrast, the nocturnal MAP increase was similar in both groups (young rats; Delta MAP=22+/-3.0 mm Hg, aged rats; Delta MAP=24+/-2.6 mm Hg). During Ang II infusion HR decreased transiently in the young rats. An opposite trend was observed in the aged rats. Ang II infusion also inverted the BP circadian rhythm, in both groups. No changes in HR circadian rhythm were observed. These differences suggest that the aging process alters in a different way Ang II-sensitive neural pathways involved in the control of autonomic activity.  相似文献   

18.
The roles of arginine vasopressin (AVP), the sympathetic nervous system, and the renin-angiotensin system in maintaining elevated blood pressure in established DOC-salt hypertension in rats were studied by injection of specific antagonists of these systems. The specific AVP antagonist dPVDAVP decreased blood pressure by 19 +/- 3 mm Hg in hypertensive rats and 6 +/- 2 mm Hg in control rats. In a different group of rats ganglionic blockade with chlorisondamine also caused a greater decrease in blood pressure in DOC-salt rats compared to controls (99 +/- 6 vs 58 +/- 4 mm Hg, respectively). In rats with autonomic ganglia blocked subsequent vasopressin antagonism decreased blood pressure 29 +/- 4 mm Hg in DOC-salt rats and 14 +/- 2 mm Hg in control rats. Converting enzyme inhibition with captopril in rats with autonomic ganglia blocked caused a lesser decrease in blood pressure in DOC-salt rats than in controls (8 +/- 2 vs 14 +/- 2 mm Hg, respectively). These results indicate that both AVP and the sympathetic nervous system contribute to the maintenance of DOC-salt hypertension. The renin-angiotension system appears to be relatively less important.  相似文献   

19.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity.  相似文献   

20.
Experiments were conducted to test the hypothesis that branchial gas transfer is enhanced in rainbow trout during hypoxia or hypercarbia by bradycardia and systemic vasoconstriction. Gas transfer was indirectly assessed by continuous monitoring of arterial blood gases, PaO2 and PaCO2. Cardiac frequency was maximally decreased by 34.9+/-4.3 and 8.6+/-3.2 bpm in hypoxic and hypercarbic fish, respectively. Pre-treating fish with atropine (1micromol kg(-1)) attenuated or abolished the bradycardia during hypoxia and hypercarbia, respectively. However, there were no significant differences in the arterial blood gases between the control and atropinized fish. Dorsal aortic blood pressure was increased maximally by 11.3+/-2.8 and 17.7+/-2.0mm Hg in the hypoxic and hypercarbic fish. Pre-treatment of fish with prazosin (2.4micromol kg(-1)) prevented these increases in blood pressure. Blood gases were unaltered by prazosin treatment in the hypercarbic fish. However, in the hypoxic fish, gas transfer appeared to be impaired by prazosin on the basis of lowered PaO2 (by approximately 35 mm Hg compared to control fish) and increased PaCO2 (by approximately 0.3mm Hg). Because the normal hyperventilatory response to hypoxia was prevented by prazosin, it is possible that the impairment of gas transfer was related to inadequate ventilation rather than to any differences in the pressor response. The present results provide no evidence that gas transfer in rainbow trout is enhanced by bradycardia nor do they reveal any obvious benefit associated with the increases in blood pressure that accompany hypoxia and hypercarbia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号