首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We report a girl with a de novo interstitial deletion in the long arm of a chromosome 10. Clinical features are described.  相似文献   

2.
Summary A (13q21q) translocation was found in an infant with Down's syndrome. The 17-year-old mother and the grandmother carried the translocation 45,XX,t(13;21)(p12;q11). The great grandparents had normal karyotypes. Fluorescence marker studies suggested that the translocation originated in the great grandmother. The hypothesis was supported by satellite association studies which showed a significant excess of 13–21 and 13–15 associations in the great grandmother.  相似文献   

3.
In this report we describe the first patient ever found to have azoospermia in association with both exceptional complex chromosomal rearrangements and microdeletions at two translocation breakpoints. A 36-year-old male who had been suffering from male factor infertility was admitted to our clinic. The patient also displayed mild dysmorphia. An analysis of the patient's semen revealed azoospermia. GTG banding revealed the presence of an exceptional complex chromosomal rearrangement involving chromosomes 1, 4, 10 and 14. Using subtelomeric FISH analysis, the patient's karyotype was designated as 46,XY,t(1;10)(q43q44;q21q26.1)(CEB108/T7+,D1S3738-;10PTEL006+,D10S2290+, D1S3738+), ins(14;4) (q31.3;q23q33)(D14S1420+; D4S3359+, D4S2930+). Array-CGH analysis revealed two microdeletions at the 4q22.3q23 and 14q31.1q31.3 chromosomal regions. We suggest that microdeletions at the 4q22.3q23 and 14q31.1q31.3 chromosomal regions associated with both an exceptional complex chromosomal rearrangement and the Homo sapiens chromosome 4 open reading frame 37 (C4orf37) gene located at the 4q22.3q23 region might be associated with male factor infertility.  相似文献   

4.
There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%-3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10(-25), within the RASIP1 locus), rs225717 (6q24; p?=?1.25×10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p?=?7.32×10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.  相似文献   

5.
Relative phylogenetic divergence of the members of the Pongidae family has been based on genetic evidence. The recent isolation of subtelomeric probes specific for human (HSA) chromosomes 1q, 11p, 13q, and 16q has prompted us to cross hybridize these to the chromosomes of the chimpanzee (Pan troglodytes, PTR), gorilla (Gorilla gorilla, GGO), and orangutan (Pongo pygmaeus, PPY) to search for their equivalent locations in the great apes. Hybridization signals to the 1q subtelomeric DNA sequence probe were observed at the termini of human (HSA) 1q, PTR 1q, GGO 1q, PPY 1q, while the fluorescent signals to the 11p subtelomeric DNA sequence probe were observed at the termini of HSA 11p, PTR 9p, GGO 9p, and PPY 8p. Fluorescent signals to the 13q subtelomeric DNA sequence probe were observed at the termini of HSA 13q, PTR 14q, GGO 14q, and PPY 14q, and positive signals to the 16p subtelomeric DNA sequence probe were observed at the termini of HSA 16q, PTR 18q, GGO 17q, and PPY 19q. These findings apparently suggest sequence homology of these DNA families in the ape chromosomes. Obviously, analogous subtelomeric sequences exist in apes' chromosomes that apparently have been conserved through the course of differentiation of the hominoid species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Genomic disorders are human diseases caused by meiotic chromosomal rearrangements of unstable regions flanked by Low Copy Repeats (LCRs). LCRs act as substrates for Non-Allelic Homologous Recombination (NAHR) leading to deletions and duplications. The aim of this study was to assess the basal frequency of deletions and duplications of the 7q11.23, 15q11-q13 and 22q11.2 regions in spermatozoa from control donors to check differences in the susceptibility to generate anomalies and to assess the contribution of intra- and inter-chromatid NAHR events. Semen samples from ten control donors were processed by FISH. A customized combination of probes was used to discriminate among normal, deleted and duplicated sperm genotypes. A minimum of 10,000 sperm were assessed per sample and region. There were no differences in the mean frequency of deletions and duplications (del + dup) among the 7q11.23, 15q11-q13 and 22q11.2 regions (frequency ± SEM, 0.37 ± 0.02; 0.46 ± 0.07 and 0.27 ± 0.07%, respectively) (P = 0.122). Nevertheless, hierarchical cluster analysis reveals interindividual differences suggesting that particular haplotypes could be the main source of variability in NAHR rates. The mean frequency of deletions was not different from the mean frequency of duplications in the 7q11.23 (P = 0.202) and 15q11-q13 (P = 0.609) regions, indicating a predominant inter-chromatid NAHR. By contrast, in the 22q11.2 region the frequency of deletions slightly exceed duplications (P = 0.032), although at the individual level any donor showed differences. Altogether, our results support the inter-chromatid NAHR as the predominant mechanism involved in the generation of sperm deletions and duplications.  相似文献   

7.
Summary A case of partial monosomy of the 13p terminal to 13q12, associated with a de novo 13/18 translocation, is reported. The symptoms appeared to be derived from both 18q- and partial monosomy 13, the latter giving rise to: high arched palate, epicanthus, antimongolian slant, small eye fissure, flat nasal bridge, hypoplastic helix, and large clitoris. Serum Ig-A and Ig-M levels were normal in our case.  相似文献   

8.
Summary This paper reports the case of a one-day-old male child presenting the typical features of Patau's syndrome. The cytogenetic study by means of conventional techniques and GTG and QFQ banding techniques showed that the chromosomal pattern of the propositus was 46,XYq+,-21,+t(13q21q) 15ps+,22ps+, and that the nondisjunction that originated the translocation and trisomy had occurred in the mother.  相似文献   

9.
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD?=?4.51, α?=?0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD?=?3.60, α?=?0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD?=?3.07, α?=?0.29; dominant HLOD?=?3.03, α?=?0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD?=?3.02, α?=?0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.  相似文献   

10.
Three balanced karyotypes (5p;15q), (8q;15q), and (12q;15q) were found simultaneously in a child with the Willi-Prader syndrome. The hypothesis is presented of a "jumping# translocation by affinity of telomeric and interstitial palindromes. The relationship between the Willi-Prader syndrome and a juxtacentric anomaly of the long arm of chromosome 15 is discussed.  相似文献   

11.
The h-PRL-1 gene codes for a new phosphotyrosine phosphatase that may play an important role in the control of basic cellular processes such as cell growth and proliferation. Using the cDNA of the h-PRL-1 gene as a probe, we examined a somatic mouse and hamster × human hybrid panel and found that chromosomes 1, 17 and 11 harbor sequences homologous to h-PRL-1. By in situ hybridization of metaphase spreads, subchromosomal localizations were determined at bands 1p35–p34, 17q12– q21 and 11q24–q25; in addition, a faint signal was detected at 12q24. The chromosomal assignment of the genes homologous to h-PRL-1 will help the investigation of its possible involvement in human diseases involving genetic alteration at these chromosomal regions. Received: 12 June 1996 / Revised: 27 July 1996  相似文献   

12.
If the theory of evolution is now largely accepted, there are still many debates on the mechanisms of evolution, including human evolution. One of these mechanisms is heterochrony of development including progenesis and neoteny. We report on a patient who could be an example of human progenesis. This boy was born prematurely, after a cesarian section for preeclampsia. Family history was unremarkable. He walked unaided when he was 2.5 years old. At 5 years of age height was 95 cm (< 3rd centile), weight 18.6 kg (40th centile) and OFC 54 cm (98th centile is 53 cm). He had a macropenis. He attended elementary school. However, at 9 years of age he had to have special education. Puberty occurred when he was 8 years old. At 14 years of age height was 141 cm (3rd centile is 144 cm), weight 32.5 kg (3rd centile) and OFC 55.5 cm (75th centile). At physical examination he had hypertelorism, narrow forehead, short philtrum, retromicrognathia, large and low set ears, hyperlaxity, overcrowed teeth, dorsal kyphosis, and macropenis. Karyotype showed a deletion 13q21q31. The deletion was de novo and pure. In conclusion this case with sexual precocity and small final stature could be an example of progenesis, rising the question of the presence of a critical region for human evolution within chromosomal region 13q21q31.  相似文献   

13.
Phylogenetic divergence of the members of the Pongidae familyhas been based on genetic evidence. The terminal repeat array(T2AG3) has lately been considered as an additional basis toanalyze genomes of highly related species. The recent isolationof subtelomeric DNA probes specific for human (HSA) chromosomes7q and 14q has prompted us to cross-hybridize them to the chromosomesof the chimpanzee (PTR), gorilla (GGO) and orangutan (PPY) tosearch for its equivalent locations in the great ape species.Both probes hybridized to the equivalent telomeric sites ofthe long (q) arms of all three great ape species. Hybridizationsignals to the 7q subtelomeric DNA sequence probe were observedat the telomeres of HSA 7q, PTR 6q, GGO 6q and PPY 10q, whilehybridization signals to the 14q subtelomeric DNA sequence probewere observed at the telomeres of HSA 14q, PTR 15q, GGO 18qand PPY 15q. No hybridization signals to the chromosome 7-specificalpha satellite DNA probe on the centromeric regions of theape chromosomes were observed. Our observations demonstratesequence homology of the subtelomeric repeat families D7S427and D14S308 in the ape chromosomes. An analogous number of subtelomericrepeat units exists in these chromosomes and has been preservedthrough the course of differentiation of the hominoid species.Our investigation also suggests a difference in the number ofalpha satellite DNA repeat units in the equivalent ape chromosomes,possibly derived from interchromosomal transfers and subsequentamplification of ancestral alpha satellite sequences.  相似文献   

14.
15.
Isochromosome not translocation in trisomy 21q21q   总被引:7,自引:2,他引:5  
Summary After primary trisomy, de novo 21q21q trisomy is the most frequent chromosomal aberration responsible for Down syndrome. This rearrangement is more commonly referred to as a Robertsonian translocation or centric fusion product than as an isochromosome, e.g., t(21q;21q) instead of i(21q); however, in practice, it has not so far proved possible to distinguish between these alternatives. The aim of this work was to establish which of the two alternatives is acceptable.  相似文献   

16.
17.
18.
Four human homeo box-containing cDNAs isolated from mRNA of an SV40-transformed human fibroblast cell line have been regionally localized on the human gene map. One cDNA clone, c10, was found to be nearly identical to the previously mapped Hox-2.1 gene at 17q21. A second cDNA clone, c1, which is 87% homologous to Hox-2.2 at the nucleotide level but is distinct from Hox-2.1 and Hox-2.2, also maps to this region of human chromosome 17 and is probably another member of the Hox-2 cluster of homeo box-containing genes. The third cDNA clone, c8, in which the homeo box is approximately 84% homologous to the mouse Hox-1.1 homeo box region on mouse chromosome 6, maps to chromosome region 12q12----12q13, a region that is involved in chromosome abnormalities in human seminomas and teratomas. The fourth cDNA clone, c13, whose homeo box is approximately 73% homologous to the Hox-2.2 homeo box sequence, is located at chromosome region 2q31----q37. The human homeo box-containing cluster of genes at chromosome region 17q21 is the human cognate of the mouse homeo box-containing gene cluster on mouse chromosome 11. Other mouse homeo box-containing genes of the Antennapedia class (class I) map to mouse chromosomes 6 (Hox-1, proximal to the IgK locus) and 15 (Hox-3). A mouse gene, En-1, with an engrailed-like homeo box (class II) and flanking region maps to mouse chromosome 1 (near the dominant hemimelia gene). Neither of the class I homeo box-containing genes--c8 and c13--maps to a region of obvious homology to chromosomal positions of the presently known mouse homeo box-containing genes.  相似文献   

19.
20.
Summary The order of fourteen polymorphic markers localised to the long arm of human chromosome 19 has been established by multipoint mapping in a set of 40 CEPH (Centre d'Étude de Polymorphisme Humain, Paris) reference families. We report here the linkage relationship of the myotonic dystrophy (DM) locus to twelve of these markers as studied in 45 families with DM. The resulting genetic map is supported by the localisation of the DNA markers in a panel of somatic cell hybrids. Ten of the twelve markers have been shown to be proximal to the DM gene and two, PRKCG and D19S22, distal but at distances of approximately 25 cM and 15 cM, respectively. The closest proximal markers are APOC2 (apolipoprotein C-II) and CKM (creatine kinase, muscle) approximately 3 cM and 2 cM from the DM gene respectively, in the order APOC2-CKM-DM. The distance between APOC2, CKM and DM (of the order of 2 million base pairs) and their known orientation should permit directional chromosome walking and jumping. The data presented here should enable us to determine whether or not new markers are distal to APOC2/CKM and thus potentially flank the DM gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号