首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal antibiotics must discriminate between bacterial and eukaryotic ribosomes to various extents. Despite major differences in bacterial and eukaryotic ribosome structure, a single nucleotide or amino acid determines the selectivity of drugs affecting protein synthesis. Analysis of resistance mutations in bacteria allows the prediction of whether cytoplasmic or mitochondrial ribosomes in eukaryotic cells will be sensitive to the drug. This has important implications for drug specificity and toxicity. Together with recent data on the structure of ribosomal subunits these data provide the basis for development of new ribosomal antibiotics by rationale drug design.  相似文献   

2.
Summary The amino-acid compositions of the mitochondrial ribosomal subunits of Saccharomyces cerevisiae have been determined and compared to those of cytoplasmic ribosomal subunits. For the large subunits, the mitochondrial and cytoplasmic ribosomes showed major differences in the proportions of arginine, alanine and methionine. For the small subunits, arginine, aspartic acid, alanine, valine and methionine showed marked differences.We have compared these amino-acid compositions with those already published of bacterial and eukaryotic ribosomes by a statistical method of data analysis. It appeared clearly that the yeast mitoribosomes are more distant from bacterial ribosomes than from eukaryotic cytoribosomes.Abbreviations r-proteins ribosomal proteins  相似文献   

3.
Site-specific labeling of Escherichia coli ribosomes has allowed application of single-molecule fluorescence spectroscopy and force methods to probe the mechanism of translation. To apply these approaches to eukaryotic translation, eukaryotic ribosomes must be specifically labeled with fluorescent labels and molecular handles. Here, we describe preparation and labeling of the small and large yeast ribosomal subunits. Phylogenetically variable hairpin loops in ribosomal RNA are mutated to allow hybridization of oligonucleotides to mutant ribosomes. We demonstrate specific labeling of the ribosomal subunits, and their use in single-molecule fluorescence and force experiments.  相似文献   

4.
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.  相似文献   

5.
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.  相似文献   

6.
The ribosomes of dry pea seeds were analysed by polyacrylamide gel electrophoresis. Ribosomes, ribosomal subunits, rRNA and ribosomal proteins were separated by variations of this same basic technique. Pea seed ribosomes were shown to have a subunit structure, rRNA complement and ribosomal protein distribution similar to other eukaryotic ribosomes. A total of 52 ribosomal proteins were identified, 24 on the small and 28 on the large RSU. The molecular weights were mostly in the range 10–35 × 103.  相似文献   

7.
Ribosome components are associated with sites of transcription   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
Summary Antibodies were prepared in rabbits and sheep to rat liver ribosomes, ribosomal subunits, and to mixtures of proteins from the particles. The antisera were characterized by quantitative immunoprecipitation, by passive hemagglutination, by immunodiffusion on Ouchterlony plates, and by immunoelectrophoresis. While all the antisera contained antibodies specific for ribosomal proteins, none had precipitating antibodies against ribosomal RNA. Rat liver ribosomal proteins were more immunogenic in sheep than rabbits, and the large ribosomal subunit and its proteins were more immunogenic than those of the 40S subparticle. Antisera specific for one or the other ribosomal subunit could be prepared; thus it is unlikely that there are antigenic determinants common to the proteins of the two subunits. When ribosomes, ribosomal subunits, or mixtures of proteins were used as antigens the sera contained antibodies directed against a large number of the ribosomal proteins.Abbreviations TP total proteins—used to designate mixtures of proteins from ribosomal particles, hence TP80 is a mixtures of all the proteins from 80S ribosomes - TP60 the proteins from 60S subunits - TP40 the proteins from 40S particles  相似文献   

10.
Enzyme linked immunosorbent assay was found to be a convenient method for the investigation of antibodies in mice immunized with Candida albicans ribosomes. Antibodies against the ribosomal antigen were detected in all the sera of mice (ICR and BALB/ c) immunized with ribosomes and incomplete Freund's adjuvant and in some of the sera of mice immunized with ribosomes only; the titer of antibodies varied from 1320 to 110 240. Vaccination of mice with ribosomal protein and IFA resulted in a high titer of antiribosomal antibodies. Treatment of ribosomes with pronase abrogated the capacity of the ribosomes to elicit anti ribosomal humoral responses, suggesting that the antibodies detected were directed against the protein moiety of the ribosomes. The presence of antibodies in sera of immunized mice could not be correlated with the protection afforded by the ribosomal vaccination.  相似文献   

11.
12.
Purified ribosomal subunits from the extremely thermoacidophilic archaebacterium Sulfolobus solfataricus are able to recognize ribosomal subunits from the yeast Saccharomyces cerevisiae forming hybrid monosomes that can be revealed by sucrose gradient analysis and are active in peptide bond formation. Both reciprocal combinations (archaebacterial 30 S + eukaryotic 60 S and archaebacterial 50 S + eukaryotic 40 S) are functional. In contrast, no hybrid couples are formed between subunits of yeast and Escherichia coli ribosomes. These results indicate that ribosomes of at least one archaebacterial species share specific structural features with those of the lower eukaryote S. cerevisiae.  相似文献   

13.
Mobile domains in ribosomes revealed by proton nuclear magnetic resonance   总被引:4,自引:0,他引:4  
Ribosomes and subunits from eukaryotic and prokaryotic sources were studied by high-resolution proton magnetic-resonance spectroscopy. If all ribosomal components are firmly bound within the particle, then only broad spectra would be expected. However, relatively sharp resonances were found both in ribosomal subunits and in 70 or 80 S ribosomes. The regions of these mobile protein domains have been partially assigned in Escherichia coli ribosomes. Large and small ribosomal subunits were treated to remove selectively proteins L7/12 and S1, respectively. Sharp proton magnetic resonance spectra were not observed for the stripped large subunit showing that proteins L7/12 comprise the flexible protein region and that there is little other flexibility in the stripped subunit. Complete removal of S1 from the small subunit greatly reduced but did not abolish the sharp protein resonance peaks, indicating that protein S1 contains a substantial flexible component but that other flexible components remain in the stripped small subunit. Evidence for generality of these features of ribosome organization is provided by similar studies on ribosomes from eukaryotic sources.  相似文献   

14.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   

15.
Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycoside antibiotics with selected eukaryotic ribosomes, we replaced the bacterial drug binding site in 16S rRNA with its eukaryotic counterpart, resulting in bacterial hybrid ribosomes with a fully functional eukaryotic rRNA decoding site. Cell-free translation assays demonstrated that hybrid ribosomes carrying the rRNA decoding site of higher eukaryotes show pronounced resistance to aminoglycoside antibiotics, equivalent to that of rabbit reticulocyte ribosomes, while the decoding sites of parasitic protozoa show distinctive drug susceptibility. Our findings suggest that phylogenetically variable components of the ribosome, other than the rRNA-binding site, do not affect aminoglycoside susceptibility of the protein-synthesis machinery. The activities of the hybrid ribosomes indicate that helix 44 of the rRNA decoding site behaves as an autonomous domain, which can be exchanged between ribosomes of different phylogenetic domains for study of function.  相似文献   

16.
Analysis of in vivo phosphorylation of mouse liver ribosomal proteins was performed by two-dimensional polyacrylamide gel electrophoresis following 32P-injection. Our method is special and differs from other eukaryotic systems reported in that all proteins separated on the first dimension gel are completely solubilized, moving quantitatively to the second dimension gel. Only ribosomes from polysomes were used, ensuring analysis of ribosomes actively engaged in protein synthesis. We resolved sixty-five distinct proteins from ribosomes from membrane bound or free polysomes. In both cases radioautography revealed similar labeled patterns with one highly phosphorylated ribosomal protein and five marginally labeled spots.  相似文献   

17.
The bovine mitochondrial system is being developed as a model system for studies on mammalian mitochondrial ribosomes. Information is emerging on the structural organization and RNA binding properties of proteins in these mitochondrial ribosomes. Unexpectedly, these ribosomes appear to interact directly with GTP, via a high affinity binding site on the small subunit. Despite major differences in their RNA content and physical properties, mammalian mitochondrial and cytoplasmic ribosomes contain about the same number of proteins. The proteins in each kind of ribosome have a similar size distribution, and both sets are entirely coded by nuclear genes, raising the possibility that these different ribosomes may contain the same set of proteins. Comparison of bovine mitochondrial and cytoplasmic r-proteins by co-electrophoresis in two-dimensional gels reveals that most of the cytoplasmic ribosomal proteins are more basic than the mitochondrial ribosomal proteins, and that none are co-migratory with mitochondrial ribosomal proteins, suggesting that the proteins in the two ribosomes are different. To exclude the possibility that the electrophoretic differences result only from post-translational modification of otherwise identical proteins, antibodies against several proteins from the large subunit of bovine mitochondrial ribosomes were tested against cytoplasmic ribosomes by solid phase radioimmunoassay and against cytoplasmic ribosomal proteins on Western blots. The lack of cross-reaction of these antibodies with cytoplasmic r-proteins suggests that mitochondrial ribosomal proteins have different primary structures and thus are most likely encoded by a separate set of nuclear genes.  相似文献   

18.
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.  相似文献   

19.
A dedicated scanning transmission electron microscope (STEM) at Brookhaven National Laboratory was used to visualize unstained freeze-dried ribosomal particles under conditions which considerably reduce the specimen distortion inherent in the heavy metal staining and air-drying preparative steps used in routine transmission electron microscopy (TEM). From high-resolution STEM images it is possible to determine molecular mass and the mass distribution within individual ribosomal particles and perform statistical evaluation of the data. Analysis of digitized STEM images of Artemia salina ribosomes provided evidence that a standard preparation of these eukaryotic ribosomes consists of a population of heterogenous particles. Because of the integrity of rRNAs established by agarose gel electrophoresis, variations in the composition and structure of the 80S monosomes and the large (60S) and small (40S) ribosomal subunits, as monitored by their mass, were attributed to the loss of ribosomal proteins, from the large subunits in particular. These results are relevant not only to the degree of ribosomal biological activity, but should also be taken into consideration for particle selection in the reconstruction of the "native" eukaryotic ribosome 3-D model.  相似文献   

20.
Ribosomes are the only cell organelles occurring in all organisms. E. coli ribosomes, which are the best characterized particles, consist of three RNAs and 53 proteins. All components have been isolated and characterized by chemical, physical and immunological methods. The primary structures of the RNAs and of all the proteins are known. Information about the secondary structure of the proteins derives from circular dichroism measurements and from secondary structure prediction methods. The tertiary structure is being studied by limited proteolysis, proton magnetic resonance and crystallization followed by X-ray analysis. Various methods are being used to elucidate the architecture of the ribosomal particle: three-dimensional image reconstruction of crystals of bacterial ribosomes and/or their subunits; immune electron microscopy; neutron scattering; protein-protein, protein-RNA and RNA-RNA crosslinking; total reconstitution of ribosomal subunits. The results from these studies yield valuable information on the architecture of the ribosomal particle. Many mutants have been isolated in which one or a few ribosomal proteins are altered or even deleted. The genetic and biochemical characterization of these mutants allows conclusions about the importance of these proteins for the function of the ribosome. Ribosomal proteins from various prokaryotic and eukaryotic species have been compared by two-dimensional gel electrophoresis, immunological methods, reconstitution and amino acid sequence analysis. These studies show a strong homology among prokaryotic ribosomal proteins but only a weak homology between proteins from prokaryotic and eukaryotic ribosomes. Comparison of the primary and secondary structures of the ribosomal RNAs from various organisms shows that the secondary structure of the RNA molecules has been strongly conserved throughout evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号