首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of Bacteriophage T5 Development by ColI Factors   总被引:14,自引:10,他引:4  
The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb(+) cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb(+) cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis.  相似文献   

3.
4.
5.
6.
7.
8.
A DNA region of 2750 base pairs encompassing the genes III, VI and I of bacteriophage M13 has been sequenced by the Maxam-Gilbert procedure. By establishing the nucleotide changes introduced by several amber mutations, the coding region and the regulatory signals of each gene have been deduced. The genes appear to span 1275 base pairs (gene III; mol.wt. 44,748) 339 base pairs (gene VI; mol.wt. 12,264) and 1047 base pairs (gene I; mol.wt. 39,500). Their separating non-codogenic regions are extremely short, namely two and one base pair, respectively. The C-terminal end of gene I, however, intrudes 23 nucleotides into gene IV. From the nucleotide sequence it appears that the minor capsid protein of the phage, which is encoded by gene III, is synthesized in a precursor form containing 18 extra amino acids at its N-terminal end. Furthermore, in this capsid protein two clusters of a fourfold repeat of the sequence Glu-Gly-Gly-Gly-Ser are apparent. Gene VI appears to code for a small, extremely hydrophobic polypeptide. Its total hydrophobic amino acids content of 51% suggests that this protein can only function in the host cell membrane.  相似文献   

9.
Phage SP RNA-dependent RNA polymerase (SP replicase) was purified from Escherichia coli infected with RNA phage SP. The enzyme was found to be composed of four non-identical polypeptides, i.e. subunits I, II, III, and IV and molecular weights of 74,000, 69,000, 47,000, and 36,000 daltons, respectively. As in the case of phage Qbeta replicase, the largest polypeptide is identical with the ribosomal protein S1, and subunits III and IV with polypeptide chain elongation factors EF-Tu and EF-ts, respectively.. This is based on the behaviour of the subunits on SDS-polyacrylamide gel electrophoresis, isoelectric focusing and immunological cross-reaction. Subunits I, III, and IV of SP replicase are derived from the host cell, while subunit II is coded by phage RNA genome. The striking coincidence of the composition and entity of the structural components of SP replicase with those of Qbeta replicase may indicate the structural and functional requirements of host-derived polypeptides in RNA replicase. The binding activity of S1 (in 70S ribosome comples) to poly (U) is retained in SP replicase complex. In contrast, the GDP binding activity of EF-Tu is masked in SP replicase. It is concluded that S1 is required functionally whereas EF-Tu.EF-Ts are required structurally in RNA replicase.  相似文献   

10.
11.
12.
We report here a study on the temperature-sensitive conjugational transfer-deficient mutant Escherichia coli JCFL39, carrying a traD(Ts) mutation, which is also temperature sensitive for group I RNA phages (MS2, f2, and R17). It is shown that, when the mutant was infected with MS2 at 42 degrees C, phage RNA replicated; a 27S MS2 RNA and phage proteins were synthesized. However, neither PFU nor physical MS2 particles were formed, showing that phage assembly was inhibited. In addition, the high temperature affected the membranes of the host mutant: the mutant was hypersensitive to chemicals, and the electrophoretic pattern of the membranal proteins was modified. We suggest that the pleiotropic effects of the traD mutation on MS2 assembly and DNA transfer during conjugation were a result of the changes in the membrane of the mutant.  相似文献   

13.
The evolution of cooperation was studied in an empirical system utilizing a parasitic bacteriophage (f1) and a bacterial host. Infected cells were propagated by serial passage so that a phage could increase its representation among infected hosts only by enhancing the rate of growth of its host. Loss of infectivity was therefore without selective penalty, and phage benevolence could potentially evolve through a variety of genetic changes. The infected hosts evolved to grow faster over the course of the study, but the genetic bases of this phenotypic change were more difficult to anticipate. Two fundamentally different types of genetic changes in the phage were revealed. One involved the loss of some phage genes, resulting in a noninfectious plasmid that continued to replicate via the parental phage replicon. The second change involved integration of the phage genome into host DNA by a process that, at low frequency, could be reversed to produce infectious phage particles. Integration is a previously unknown property of wild-type f1, and in the system studied, may have resulted from the use of a phage bearing an insert containing nonfunctional DNA. The evolution of this novel function apparently depended only on the presence of a small region in the phage genome that provided some homology to the host DNA, with the host providing all necessary functions. Although f1 is one of the simplest phages known, these observations suggest that host-parasite interactions of the filamentous phages are more complicated than previously thought. More generally, the f1 system offers a useful model for many problems concerning the genetic basis of adaptation.  相似文献   

14.
15.
A P Chernov  V M Kriukov  A A Baev 《Genetika》1979,15(10):1724-1729
Six mutants of phage T5 have been selected by temperature inactivation in the presence of chelate-forming agents. Hybridization of DNA of the mutants with 4S RNA of phage T5+ has shown that all mutants have the deletions affecting tRNA genes. The size of the deletions and their location about the sites of DNA clevage with endonucleases EcoR1, Hind III, PstI and the nicks have been determined.  相似文献   

16.
17.
Intracellular events following infection of competent Haemophilus influenzae by HPlcl phage, or transfection by DNA from the phage, were examined. Physical separation of a large fraction of the intracellular phage DNA from the bulk of the host DNA was achieved by lysis of infected or transfected cells with digitonin, followed by low-speed centrifugation. The small amount of bacterial DNA remaining with the phage DNA in the supernatants could be distinguished from phage DNA by its ability to yield transformants. After infection by whole phage, three forms of intracellular phage DNA were observable by sedimentation velocity analysis: form III, the slowest-sedimenting one; form II, which sedimented 1.1 times faster than III, and form I, which sedimented 1.6 times faster than III. It was shown by electron microscopy, velocity sedimentation in alkali, and equilibrium sedimentation with ethidium bromide, that forms I, II and III are twisted circles, open circles, and linear duplexes, respectively.After the entry of phage DNA into wild-type cells in transfection, the DNA is degraded at early times, but later some of the fragments are reassembled, resulting in molecules that sediment faster than the monomer length of phage DNA. Some of the fast-sedimenting molecules are presumably concatemers and are generated by recombination. In strain rec1? the fast-sedimenting molecules do not appear and degradation of phage DNA is even more pronounced than in wild-type cells. In strain rec2? there is little degradation of phage DNA, and the proportion of fast-sedimenting molecules is much smaller than in wild-type cells. Since rec1? and rec2? are transfected with much lower efficiency than wild type, our hypothesis is that both fragmentation and generation of fast-sedimenting phage DNA by recombination are required for more efficient transfection.  相似文献   

18.
P. Kourilsky   《Biochimie》1975,56(11-12)
We previously showed that, under conditions of rapid exponential growth, lysogenization of E. coli cells by phage λ requires that the cell is infected by at least 2 phages able to replicate their DNA, or 3 or 4 phages unable to replicate their DNA [ref. 4]. Since genes dealing with prophage integration appear not to be involved in these multiplicity dependent processes, a determination was made as to whether more than one copy of the genes involved in repressor synthesis or its activation are needed for lysogenization. The complementation patterns which we obtained indicate multiplicity effects involving gene cII (and, perhaps, cIII) in lysogenization by both phage able or unable to replicate. In the former case, we propose that cII protein (and, perhaps, cIII) both induces repressor synthesis and inhibits phage DNA replication. In lysogenization by phage unable to replicate, the data suggest that the expression of early phage genes and repressor synthesis in the course of lysogenization are mutually exclusive processes which do not take place on the same phage chromosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号