首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coarse woody debris (CWD) is generally considered as dead woody materials in various stages of decomposition, including sound and rotting logs, snags, and large branches. CWD is an important functional and structural component of forested ecosystems and plays an important role in nutrient cycling, long-term carbon storage, tree regeneration, and maintenance of heterogeneous environmental and biological diversity. However, the definition and classification of CWD have been the subject of a long debate in forest ecology. CWD has not been precisely defined. Recently, with the rapid development of landscape ecology in CWD, the USDA Forest Service and the Long Term Ecological Research (LTER) have provided a standardized definition and classification for CWD, which makes data comparison in landscape scale possible. Important characteristics of their definition include: (1) a minimum diameter (or an equivalent cross-section) of CWD ≥10 cm at the widest point (the woody debris with a diameter from 1 to 10 cm should be defined as fine woody debris, and the rest is litterfall); and (2) sound and rotting logs, snags, stumps, and large branches (located above the soil), and coarse root debris (larger than 1 cm in diameter). This classification has greatly facilitated CWD studies. Therefore, it has been widely applied in some countries (particularly in North America). However, this classification has long been a source of confusion for forest ecologists in China. Furthermore, different definitions and criteria are still adopted in individual studies, which makes the interpretation and generalization of their work difficult. This article reviewed recent progress in classifying CWD, with an emphasis on introducing the classification system of the USDA Forest Service and the LTER. It is expected that this review will help facilitate the development of standardized definition and classification suitable to forest ecosystems in China. Translated from Acta Ecologica Sinica, 2005, 25(1) (in Chinese)  相似文献   

2.
Coarse woody debris (CWD) is generally considered as dead woody materials in various stages of decomposition,including sound and rotting logs,snags,and large branches.CWD is an important functional and structural component of forested ecosystems and plays an important role in nutrient cycling,long-term carbon storage,tree regeneration,and maintenance of heterogeneous environmental and biological diversity.However,the definition and classification of CWD have been the subject of a long debate in forest ecology.CWD has not been precisely defined.Recently,with the rapid development of landscape ecology in CWD,the USDA Forest Service and the Long Term Ecological Research (LTER)have provided a standardized definition and classification for CWD,which makes data comparison in landscape scale possible.Important characteristics of their definition include:(1) a minimum diameter (or an equivalent crosssection) of CWD≥10 cm at the widest point (the woody debris with a diameter from 1 to 10 cm should be defined as fine woody debris,and the rest is litterfall);and (2) sound and rotting logs,snags,stumps,and large branches (located above the soil),and coarse root debris (larger than 1 cm in diameter).This classification has greatly facilitated CWD studies.Therefore,it has been widely applied in some countries (particularly in North America).However,this classification has long been a source of confusion for forest ecologists in China.Furthermore,different definitions and criteria are still adopted in individual studies,which makes the interpretation and generalization of their work difficult.This article reviewed recent progress in classifying CWD,with an emphasis on introducing the classification system of the USDA Forest Service and the LTER.It is expected that this review will help facilitate the development of standardized definition and classification suitable to forest ecosystems in China.  相似文献   

3.
Summarized here are ten investigations concerning the volume of coarse woody debris (CWD) in Central European streams. Altogether, 69 stream sections were examined ranging from Northern German lowland streams to brooks in alpine regions. Most of the study streams are according to Central European standards quasi‐natural and are bordered by deciduous forest. The geometric mean of CWD volume related to stream length is 1.44 m3 /100 meter reach. Related to stream bottom area, the geometric mean of CWD volume is 0.202 m3 /100 m2 . The mean number of logs (≥10 cm diameter) is 12.5 logs/100 meter reach, and 3.01/100 m2 bottom area (geometric means). Regarding only quasi‐natural stream sections (riparian forest currently unmanaged and no removal of CWD for at least 10 years), the geometric mean of CWD standing stock is 0.45 m3 /100 m2 for lowland streams, 0.38 m3/100 m2 for streams in lower mountainous areas and 0.02 m3 /100 m2 for alpine floodplains. From the distribution of size classes and comparison with other studies it is likely, that the current CWD standing stock is considerably less than the potential amount of CWD. For centuries all of the streams have been influenced by man. Historic alterations of the stream, its floodplain and the riparian vegetation may still affect CWD supply and standing stock. We conclude that virtually all streams in Central Europe are highly altered with respect to the amount of CWD, and that the importance of CWD is under‐represented in recent assessment principles for streams in Germany.  相似文献   

4.
Coarse woody debris (CWD) volume and diversity are vital attributes of forest ecosystems. However, despite their importance, their long-term dynamics associated with fire- or logging-origin and overstory type have not been examined in boreal forest. We hypothesize that (1) CWD compositional diversity increases with stand development whereas CWD volume follows a U-shaped pattern. Furthermore, we attempted to test if (2) CWD volume and compositional diversity converge for postlogged and postfire stands through stand development, and (3) mixedwoods have more CWD volume and greater compositional diversity than conifer or broadleaf overstory types. We sampled 72 stands ranging in age from 7 to 201 years in fire-origin stands and 7–31 years in managed stands with conifer, mixedwood, and broadleaf overstory types in central boreal Canada. For fire-origin stands, snag volume was 100–260 m3/ha in 7-year-old stands, 5–20 m3/ha in 25-year-old stands, and 25–60 m3/ha in older stands; downed woody debris (DWD) volume decreased from 7 to 72–90 year-old stands, increased in 124- to 139-year-old stands, then either decreased or increased in 201-year-old stands depending on overstory type. CWD diversity increased from 25 to 124–139 year-old and plateaued, but in 7-year-old stands, CWD diversity was as high as that in the 124 and up year-old age classes. Logging resulted in a smaller amount and lower size variability of CWD in 7-year-old stands, with a larger portion being fast-decomposing Betula papyrifera. Most CWD characteristics had not converged by approximately 30 years since disturbance between the two stand origins. More diverse CWD occurred in mixedwoods, but conifer stands contained the greatest CWD volume except in 7 year-old postfire stands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. B. W. Brassard collected and analyzed data and wrote the paper. H. Y. H. Chen conceived and designed the study, analyzed data, and critiqued earlier drafts of the paper.  相似文献   

5.
The accumulation and decomposition of coarse woody debris (CWD) are processes that affect habitat, soil structure and organic matter inputs, and energy and nutrient flows in forest ecosystems. Natural disturbances such as fires typically produce large quantities of CWD as trees fall and break, whereas human disturbances such as timber harvesting remove much of the CWD. Our objective was to compare the amount of CWD removed and left behind after clear-cutting to the amount consumed and left behind after natural fires in Rocky Mountain lodgepole pine. The masses of fallen logs, dead-standing trees, stumps, and root crowns more than 7.5 cm in diameter were estimated in clear-cut and intact lodgepole pine forests in Wyoming and compared to estimates made in burned and unburned stands in Yellowstone National Park (YNP), where no timber harvesting has occurred. Estimates of downed CWD consumed or converted to charcoal during an intense crown fire were also made in YNP. No significant differences in biomass of downed CWD more than 7.5 cm in diameter were detected between burned stands and those following a single clear-cut. However, the total mass of downed CWD plus the mass of snags that will become CWD was nearly twice as high in burned stands than in clear-cuts. In YNP, approximately 8% of the downed CWD was consumed by fire and an additional 8% was converted to charcoal, for an estimated loss of about 16%. In contrast, approximately four times more wood (70%) was removed by clear-cutting. Considering all CWD more than 7.5 cm in diameter that was either still present in the stand or removed by harvesting, slash treatment, or burning, clear-cut stands lost an average of 80 Mg ha−1 whereas stands that burned gained an average of 95 Mg ha−1. Some CWD remains as slash and stumps left behind after harvesting, but stands subjected to repeated harvesting will have forest floor and surface soil characteristics that are beyond the historic range of variability of naturally developing stands. Received 16 November 1999; Accepted 31 May 2000.  相似文献   

6.
We evaluated the status of coarse woody debris (CWD, fallen wood) on floodplains of the southern Murray‐Darling basin of southeastern Australia. The floodplains are dominated floristically by the river red gum Eucalyptus camaldulensis. Aerial survey techniques were used to estimate the amounts of woody debris within 200 m of the channels along 2,442 km of 11 rivers of the system, including the Murray and Darling Rivers and the Darling Anabranch. Aerially based indices were converted into wood volumes by using ground‐truthing at a selection of sites; there was a strong correlation between index values and measured wood volume densities. For thickly forested sites such as Barmah, Gunbower Island, and the Ovens floodplains, the aerial method was not useful, so ground measurements at randomly positioned sites within the forests were used. Volumes were translated into mass by using conversion factors drawn from the literature. We estimated that total tonnage on approximately 221,000 ha of floodplain forests was 4.175 ± 0.579 × 106 tonne. In the larger forested blocks (>7,000 ha), mean wood densities ranged between approximately 12 tonne/ha on the lower Goulburn up to approximately 24 tonne/ha at Barmah State Forest. The area‐weighted mean for the entire area was approximately 19 tonne/ha. A main purpose of the research was to place these figures into an historical perspective to evaluate implications for restoration. A thorough search of historical documentation revealed that there are no extant data upon which to estimate pre‐European settlement levels. We used information from an apparently undisturbed “unmanaged” site in the Millewa forests of southern New South Wales as a basis. Wood density there corresponded to a mean figure of 125 tonne/ha wood‐mass density. By using this figure we estimate that CWD levels on the southern Murray‐Darling basin may be of the order of 15% of pre‐European settlement levels. Full restoration of the 221,000 ha surveyed would require 23.5 ± 0.579 × 106 tonne, which is equivalent to about 600,000 mature (1 m diameter at breast height) river red gum trees or the amount of timber derived from clear felling about 115,000 ha of river red gum forest at current stocking levels. We discuss the implications of this massive deficit and possible short‐ and long‐term solutions.  相似文献   

7.
The objective of this study was to quantify carbon (C) distribution for boreal black spruce (Picea mariana (Mill.) BSP) stands comprising a fire chronosequence in northern Manitoba, Canada. The experimental design included seven well‐drained (dry) and seven poorly‐drained (wet) stands that burned between 1998 and 1850. Vegetation C pools (above‐ground + below‐ground) steadily increased from 1.3 to 83.3 t C ha?1 for the dry chronosequence, and from 0.6 to 37.4 t C ha?1 for the wet chronosequence. The detritus C pools (woody debris + forest floor) varied from 10.3 to 96.0 t C ha?1 and from 12.6 to 77.4 t C ha?1 for the dry and wet chronosequence, respectively. Overstorey biomass, mean annual biomass increment (MAI), woody debris mass, and litterfall were significantly greater (α = 0.05) for the dry stands than for the wet stands, but the bryophyte, understorey, and forest floor C pools were significantly less for the dry than for the wet stands. The root mass ratio decreased with stand age until 37 years after fire, was fairly constant thereafter, and was not significantly affected by soil drainage. The C pools of the overstorey and bryophyte tended to increase with stand age. Foliage biomass, litterfall, and MAI (for the dry stands) peaked at 71 years after fire and declined in the oldest stands. The results from this study illustrate that the effects of disturbance and edaphic conditions must be accounted for in boreal forest C inventories and C models. The appropriateness of using chronosequences to examine effects of wildfire on ecosystem C distribution is discussed.  相似文献   

8.
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV–Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13–15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates.  相似文献   

9.
Radiocarbon signatures (Δ14C) of carbon dioxide (CO2) provide a measure of the age of C being decomposed by microbes or respired by living plants. Over a 2‐year period, we measured Δ14C of soil respiration and soil CO2 in boreal forest sites in Canada, which varied primarily in the amount of time since the last stand‐replacing fire. Comparing bulk respiration Δ14C with Δ14C of CO2 evolved in incubations of heterotrophic (decomposing organic horizons) and autotrophic (root and moss) components allowed us to estimate the relative contributions of O horizon decomposition vs. plant sources. Although soil respiration fluxes did not vary greatly, differences in Δ14C of respired CO2 indicated marked variation in respiration sources in space and time. The 14C signature of respired CO2 respired from O horizon decomposition depended on the age of C substrates. These varied with time since fire, but consistently had Δ14C greater (averaging ~120‰) than autotrophic respiration. The Δ14C of autotrophically respired CO2 in young stands equaled those expected for recent photosynthetic products (70‰ in 2003, 64‰ in 2004). CO2 respired by black spruce roots in stands >40 years old had Δ14C up to 30‰ higher than recent photosynthates, indicating a significant contribution of C stored at least several years in plants. Decomposition of O horizon organic matter made up 20% or less of soil respiration in the younger (<40 years since fire) stands, increasing to ~50% in mature stands. This is a minimum for total heterotrophic contribution, since mineral soil CO2 had Δ14C close to or less than those we have assigned to autotrophic respiration. Decomposition of old organic matter in mineral soils clearly contributed to soil respiration in younger stands in 2003, a very dry year, when Δ14C of soil respiration in younger successional stands dropped below those of the atmospheric CO2.  相似文献   

10.
11.
Two methods of estimating the lateral migration of a river channel have been proposed. The first method is based on Coarse Woody Debris (CWD) dating. The terraces of the Mala Panew River are mainly covered with plantations of Pinus sylvestris where individual trees grow at equal distances to each other. During times of high discharges trees fall onto the riverbed providing information on the extent of flood plain erosion. The ages of CWD and the surface of the eroded flood plain provide an estimation of the rate of lateral migration. The erosion rates measured at two sites in the Mala Panew River were between 0.24 and 0.36 m/year.Another way of reconstructing the rate of lateral migration is by dating trees growing on different-aged sandy meander bars. These levels are primarily covered with Alnus glutinosa and Alnus incana. The oldest trees growing on each level give information about the minimum age of that level, which allows us to reconstruct the rate of lateral migration. The lateral migration of the channel has also been estimated dating the oldest trees growing on mid-channel islands separated from the lateral banks. The values obtained for 10 sites of the Mala Panew channel oscillate between 0.07 and 1.83 m/year.Tree ring analyses also allow us to determine the impact of individual high discharges on the lateral migration rate of the Mała Panew channel. The lateral migration of the channel was most rapid in the years 1953–57 and 1966–68 as well as during the extraordinary flood in 1997.  相似文献   

12.
Few data sets have characterized carbon (C) and nitrogen (N) pools in woody debris at sites where other aspects of C and N cycling are studied and histories of land use and disturbance are well documented. We quantified pools of mass, C, and N in fine and coarse woody debris (CWD) in two contrasting stands: a 73-year-old red pine plantation on abandoned agricultural land and a naturally regenerated deciduous forest that has experienced several disturbances in the past 150 years. Masses of downed woody debris amounted to 40.0 Mg ha−1 in the coniferous stand and 26.9 Mg ha−1 in the deciduous forest (20.4 and 13.8 Mg C ha−1, respectively). Concentrations of N were higher and C:N ratios were lower in the deciduous forest compared to the coniferous. Pools of N amounted to 146 kg N ha−1 in the coniferous stand and 155 kg N ha−1 in the deciduous forest; both are larger than previously published pools of N in woody debris of temperate forests. Woody detritus buried in O horizons was minimal in these forests, contrary to previous findings in forests of New England. Differences in the patterns of mass, C, and N in size and decay classes of woody debris were related to stand histories. In the naturally regenerated deciduous forest, detritus was distributed across all size categories, and most CWD mass and N was present in the most advanced decay stages. In the coniferous plantation, nearly all of the CWD mass was present in the smallest size class (less than 25 cm diameter), and a recognizable cohort of decayed stems was evident from the stem-exclusion phase of this even-aged stand. These results indicate that heterogeneities in site histories should be explicitly included when biogeochemical process models are used to scale C and N stocks in woody debris to landscapes and regions. Received 27 April 2001; accepted 4 January 2002.  相似文献   

13.
We have studied the share of coarse woody debris (CWD) reserves at different decay classes in the spruce and fir woodland within the impact area of aerial pollution from the Middle Ural Copper Smelter (Revda, Sverdlovsk oblast). Control and impact areas slightly differ in total reserves and number of trunks of CWD (sum of standing and fallen dead wood). However, the number of CWD tends to grow in proximity to the plant. The mechanisms involved in CWD-reserve formation differ between impact and control sites. A larger number of relatively thin trunks prevail in CWD reserves of impact sites when compared to the lower number of thick trunks at control sites. The CWD share of 30% in the total number of dead and living trees did not differ across pollution loads. However, the share of CWD reserves in total stock is 1.9 times higher near the plant than at the control site. The share of logs at the initial stages of decomposition (first and second decay classes) is 3.2 times higher in terms of CWD number and 4.2 times higher in terms of CWD reserves than at the control sites. This points to the strong inhibition of CWD decomposition. The pattern of decay classes of all sizes of fallen trees significantly differs in volume across pollution zones.  相似文献   

14.
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.  相似文献   

15.
16.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

17.
We present a decadal (1994–2004) record of carbon dioxide flux in a 160‐year‐old black spruce forest/veneer bog complex in central Manitoba, Canada. The ecosystem shifted from a source (+41 g C m−2, 1995) to a sink (−21 g C m−2, 2004) of CO2 over the decade, with an average net carbon balance near zero. Annual mean temperatures increased 1–2° during the period, consistent with the decadal trend across the North American boreal biome. We found that ecosystem carbon exchange responded strongly to air temperature, moisture status, potential evapotranspiration, and summertime solar radiation. The seasonal cycle of ecosystem respiration significantly lagged that of photosynthesis, limited by the rate of soil thaw and the slow drainage of the soil column. Factors acting over long time scales, especially water table depth, strongly influenced the carbon budget on annual time scales. Net uptake was enhanced and respiration inhibited by multiple years of rainfall in excess of evaporative demand. Contrary to expectations, we observed no correlation between longer growing seasons and net uptake, possibly because of offsetting increases in ecosystem respiration. The results indicate that the interactions between soil thaw and water table depth provide critical controls on carbon exchange in boreal forests underlain by peat, on seasonal to decadal time scales, and these factors must be simulated in terrestrial biosphere models to predict response of these regions to future climate.  相似文献   

18.
Permafrost patterning in boreal peatlands contributes to landscape heterogeneity, as peat plateaus, palsas, and localized permafrost mounds are interspersed among unfrozen bogs and fens. The degradation of localized permafrost in peatlands alters local topography, hydrology, thermal regimes, and plant communities, and creates unique peatland features called internal lawns. I used laboratory incubations to quantify carbon dioxide (CO2) production in peat formed under different permafrost regimes (with permafrost, without permafrost, melted permafrost), and explored the relationships among proximate organic matter fractions, nutrient concentrations, and decomposition. Peat within each feature (internal lawn, bog, permafrost mound) is more chemically similar than peat collected within the same province (Alberta, Saskatchewan) or within depth intervals (surface, deep). Internal lawn peat produces more CO2 than the other peatland types. Across peatland features, acid-insoluble material (AIM) and AIM/nitrogen are significant predictors of decomposition. However, within each peatland feature, soluble proximate fractions are better predictors of CO2 production. Permafrost stability in peatlands influences plant and soil environments, which control litter inputs, organic matter quality, and decomposition rates. Spatial patterns of permafrost, as well as ecosystem processes within various permafrost features, should be considered when assessing the fate of soil carbon in northern ecosystems.  相似文献   

19.
The distribution, habitat and conservation requirements of an endangered stag beetle, Lissotes latidens (Coleoptera: Lucanidae), in south-east Tasmania were investigated. This study trebled the known range of the species to 280 km2, of which 15% constituted potential habitat. The beetle was found to inhabit a range of wet forest types including damp eucalypt forest, wet eucalypt forest, rainforest and riparian areas amongst drier forest types. Relative to other Tasmanian lucanids, L. latidens was found to occur at quite low population densities. The species had a preference for forest with a well-developed overstorey and greater than 10% ground cover of coarse woody debris (CWD). Although L. latidens is soil-dwelling throughout its life-cycle, it has a close association with CWD, occurring under logs at the interface of soil and CWD. Suitable forest habitat for L. latidens is poorly reserved, with 48% managed under clearfell, burn and sow forestry regimes; a practice that is likely to lead to the depletion of CWD over successive harvesting rotations. Recommendations are made for the conservation management of habitat utilised by L. latidens in off-reserve areas. The need for conservation strategies to incorporate the temporal dynamics of habitat important to forest-dependent threatened species is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号