首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of Brassica napus L. cv Tower embryos of different ages cultured in vitro with and without high osmoticum (0.48 and 0.69 molar sorbitol) was compared with normal development in situ to investigate the role of a drying environment in embryo maturation. Sensitivity to osmoticum was assayed in terms of its ability to mimic normal development, i.e. to both suppress germination and maintain 12 S storage protein (cruciferin) synthesis at levels comparable to those seen in the developing seed. The osmotic conditions used block germination of predesiccation stage embryos but were not sufficient to prevent desiccation stage embryos from taking up water and germinating. At all stages tested, the osmotically treated embryos had approximately normal levels of cruciferin mRNA. Measurements of endogenous abscisic acid (ABA) levels by radioimmunoassay indicated that the osmotic effects on germination and gene expression were not mediated by elevated embryonic ABA. Comparison of the kinetics of osmotic and ABA effects on gene expression showed that the osmotic effect is more rapid. These results are consistent with the hypothesis that ABA acts by inhibiting water uptake, which mechanically prevents germination and affects gene expression in some unknown manner.  相似文献   

2.
3.
A single-chain Fv antibody (scFv) gene, which has previously been used to immunomodulate abscisic acid (ABA) activity in transgenic tobacco to create a 'wilty' phenotype, was put under control of the seed-specific USP promoter from Vicia faba and used to transform tobacco. Transformants were phenotypically similar to wild-type plants apart from their seeds. Anti-ABA scFv embryo development differed markedly from wild-type embryo development. Seeds which accumulated similar levels of a scFv that binds to oxazolone, a hapten absent from plants, developed like wild-type embryos. Anti-ABA scFv embryos developed green cotyledons containing chloroplasts and accumulated photosynthetic pigments but produced less seed storage protein and oil bodies. Anti-ABA scFv seeds germinated precociously if removed from seed capsules during development but were incapable of germination after drying. Total ABA levels were higher than in wild-type seeds but calculated free ABA levels were near-zero until 21 days after pollination. We show for the first time seed-specific immunomodulation and the resulting switch from the seed maturation programme to a germination programme. We conclude that the immunomodulation of hormones can alter the development programme of target organs, allowing the study of the directly blocked endogenous molecules and manipulation of the system concerned.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The mechanisms by which the maize antioxidant Cat1 gene responds to abscisic acid (ABA) and osmotic stress have been investigated. Results show that during late embryogenesis, Cat1 expression in vivo is independent of endogenous ABA levels. However, exogenously applied ABA significantly enhances Cat1 expression. Transient assays using particle bombardment show that the proximal ABRE2 element on the Cat1 promoter is responsible for the induction of Cat1 expression by ABA. We further show that ABA induces the expression of Cat1 via the interaction between ABRE2 and one of its binding proteins, CBF1 (Cat1 binding factor 1). Using ABA-deficient mutant embryos, we show that osmotic stress induces Cat1 expression through two alternate signal transduction pathways: an ABA signaling pathway leading to the interaction between the ABRE2 motif and CBF1, and a pathway via the interaction of ABRE2 and CBF2 (Cat1 binding factor 2) that is independent of ABA. The data presented clearly suggest that hydrogen peroxide (H2O2) plays an important intermediary role in the ABA signal transduction pathway leading to the induction of the Cat1 gene.  相似文献   

11.
The classic role of SUCROSE NONFERMENTING-1 (Snf1)-like kinases in eukaryotes is to adapt metabolism to environmental conditions such as nutrition, energy, and stress. During pea (Pisum sativum) seed maturation, developmental programs of growing embryos are adjusted to changing physiological and metabolic conditions. To understand regulation of the switch from cell proliferation to differentiation, SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE (SnRK1) was antisense repressed in pea seeds. Transgenic seeds show maturation defects, reduced conversion of sucrose into storage products, lower globulin content, frequently altered cotyledon surface, shape, and symmetry, as well as occasional precocious germination. Gene expression analysis of embryos using macroarrays of 5,548 seed-specific genes revealed 183 differentially expressed genes in two clusters, either delayed down-regulated or delayed up-regulated during transition. Delayed down-regulated genes are related to mitotic activity, gibberellic acid/brassinosteroid synthesis, stress response, and Ca2+ signal transduction. This specifies a developmentally younger status and conditional stress. Higher gene expression related to respiration/gluconeogenesis/fermentation is consistent with a role of SnRK1 in repressing energy-consuming processes in maturing cotyledons under low oxygen/energy availability. Delayed up-regulated genes are mainly related to storage protein synthesis and stress tolerance. Most of the phenotype resembles abscisic acid (ABA) insensitivity and may be explained by reduced Abi-3 expression. This may cause a reduction in ABA functions and/or a disconnection between metabolic and ABA signals, suggesting that SnRK1 is a mediator of ABA functions during pea seed maturation. SnRK1 repression also impairs gene expression associated with differentiation, independent from ABA functions, like regulation and signaling of developmental events, chromatin reorganization, cell wall synthesis, biosynthetic activity of plastids, and regulated proteolysis.  相似文献   

12.
13.
Wang ZY  Xiong L  Li W  Zhu JK  Zhu J 《The Plant cell》2011,23(5):1971-1984
Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling.  相似文献   

14.
15.
Carrot (Daucus carota) somatic embryogenesis has been extensively used as an experimental system for studying embryogenesis. In maturing zygotic embryos, abscisic acid (ABA) is involved in acquisition of desiccation tolerance and dormancy. On the other hand, somatic embryos contain low levels of endogenous ABA and show desiccation intolerance and lack dormancy, but tolerance and dormancy can be induced by exogenous application of ABA. In ABA-treated carrot embryos, some ABA-inducible genes are expressed. We isolated the Daucus carota bZIP1 (DcBZ1) gene encoding a G-box binding factor-type basic region/leucine zipper (GBF-type bZIP) factor from carrot somatic embryos. The expression of DcBZ1 was detected in embryogenic cells, non-embryogenic cells, somatic embryos, developing seeds, seedlings, and true leaves. Notably, higher expression was detected in embryogenic cells, true leaves, and seedlings. The expression of DcBZ1 increased in seedlings and true leaves after ABA treatment, whereas expression was not affected by differences in light conditions. During the development of zygotic and somatic embryos, increased expression of DcBZ1 was commonly detected in the later phase of development. The recombinant DcBZ1 protein showed specific binding activity to the two ABA-responsive element-like motifs (motif X and motif Y) in the promoter region of the carrot ABA-inducible gene according to results from an electrophoretic mobility shift assay. Our findings suggest that the carrot GBF-type bZIP factor, DcBZ1, is involved in ABA signal transduction in embryogenesis and other vegetative tissues.  相似文献   

16.
Abscisic acid and osmoticum maintain maturation and proteinsynthesis of developing alfalfa embryos, individually and incombination. The in situ environment of developing alfalfa zygoticembryos is rich in ABA and low in osmotic potential. When ABAsynthesis was inhibited by treating the pods with fluridoneat an early stage of development, the seeds which subsequentlydeveloped contained low amounts of ABA, but had a similar osmoticpotential as untreated control seeds. The reduced ABA in seedsfrom fluridone-treated pods did not change the morphology exceptthe colour of seeds, nor did it induce viviparous germinationor affect storage protein synthesis. However, two nonstorageproteins which were synthesized in control seeds during earlyto mid-development were absent from fluridone-treated seeds.Control seeds containing these two proteins were desiccation-tolerant,whereas the fluridone-treated seeds which lacked them were desiccation-intolerant,at least until the deposition of storage proteins was nearlycomplete. Culture of isolated embryos on nutrient medium inducedgermination and curtailed storage protein synthesis in the embryos.Addition of either ABA or osmoticum to the nutrient medium preventedgermination and maintained storage protein synthesis. When fluridonewas added along with osmoticum, germination occurred, but storageprotein synthesis was maintained. Key words: Embryogenesis, Medicago sativa L., alfalfa, ABA, osmotic potential, fluridone, desiccation, storage protein synthesis  相似文献   

17.
Maize (Zes mays L.) embryos, isolated from the developing seed and incubated in dilute buffer, show reduced triacylglycerol (TAG) synthesis, and accumulation stops after 24 h. Synthesis and accumulation can be maintained at high levels if the incubation medium contains abscisic acid (ABA) and/or a high osmotic concentration. Radiolabeled free fatty acids accumulate at higher levels in embryos that contain less TAG, and acetyl coenzyme A carboxylase activity remains essentially unchanged under all of the conditions tested. In contrast, the activities of the acyltransferases required for TAG synthesis remain high only in embryos incubated with ABA and/or a high osmotic concentration. Dose-response curves showed that 4 microM of ABA or mannitol at -1.0 MPa elicits a full response; both values are within the range considered to be physiological. The TAG synthesis capacity and discylglycerol acyltransferase activity lost by pretreatment of the embryos can be restored by re-exposure to ABA or high osmoticum. Germination is not involved because isolated scutellum halves showed the same changes in enzyme activity found in the whole embryo but did not germinate. Our results provide direct evidence for the regulation of TAG-synthesizing activities in maize embryos by ABA and the osmotic potential of the environment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号