首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This contribution documents widespread trawling damage to cold-water coral reefs at 840-1300 m depth along the West Ireland continental shelf break and at 200 m off West Norway. These reefs are spectacular but poorly known. By-catches from commercial trawls for deep-water fish off West Ireland included large pieces (up to 1 m(2)) of coral that had been broken from reefs and a diverse array of coral-associated benthos. Five azooxanthellate scleractinarian corals were identified in these by-catches, viz. Desmophyllum cristagalli, Enallopsammia rostrata, Lophelia pertusa, Madrepora oculata and Solenosmilia variabilis. Dating of carbonate skeletons using (14)C accelerator mass spectrometry showed that the trawled coral matrix was at least 4550 years old. Surveys by remotely operated vehicles in Norway showed extensive fishing damage to L. pertusa reefs. The urgent need for deep-water coral conservation measures is discussed in a Northeast Atlantic context.  相似文献   

2.
3.
The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km2). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.  相似文献   

4.
In June, 2002, the government of Dominica requested assistance in evaluating the coral culture and transplantation activities being undertaken by Oceanographic Institute of Dominica (OID), a coral farm culturing both western Atlantic and Indo-Pacific corals for restoration and commercial sales. We assessed the culture facilities of OID, the condition of reefs, potential impacts of coral collection and benefits of coral transplantation. Coral reefs (9 reefs, 3-20 m depth) were characterized by 35 species of scleractinian corals and a live coral cover of 8-35%. Early colonizing, brooders such as Porites astreoides (14.8% of all corals), P. porites (14.8%), Meandrina meandrites (14.7%) and Agaricia agaricites (9.1%) were the most abundant corals, but colonies were mostly small (mean = 25 cm diameter). Montastraea annularis (complex) was the other dominant taxa (20.8% of all corals) and colonies were larger (mean = 70 cm). Corals (pooled species) were missing an average of 20% of their tissue, with a mean of 1.4% recent mortality. Coral diseases affected 6.4% of all colonies, with the highest prevalence at Cabrits West (11.0%), Douglas Bay (12.2%) and Coconut Outer reef (20.7%). White plague and yellow band disease were causing the greatest loss of tissue, especially among M. annularis (complex), with localized impacts from corallivores, overgrowth by macroalgae, storm damage and sedimentation. While the reefs appeared to be undergoing substantial decline, restoration efforts by OlD were unlikely to promote recovery. No Pacific species were identified at OID restoration sites, yet species chosen for transplantation with highest survival included short-lived brooders (Agaricia and Porites) that were abundant in restoration sites, as well as non-reef builders (Palythoa and Erythropodium) that monopolize substrates and overgrow corals. The species of highest value for restoration (massive broadcast spawners) showed low survivorship and unrestored populations of these species were most affected by biotic stressors and human impacts, all of which need to be addressed to enhance survival of outplants. Problems with culture practices at OID, such as high water temperature, adequate light levels and persistent overgrowth by macroalgae could be addressed through simple modifications. Nevertheless, coral disease and other stressors are of major concern to the most important reef builders, as these species are less amenable to restoration, collection could threaten their survival and losses require decades to centuries to replace.  相似文献   

5.
Coral Reefs - Coral reef ecology has advanced in many fields, but disease patterns across depth gradients remain unclear. By comparing the prevalence and extent of bleaching and diseases in 160...  相似文献   

6.
Coral Reefs - Coral reefs are suffering unprecedented declines worldwide. Most studies focus on stressors such as rising temperatures, nutrient pollution, overfishing, and ocean acidification as...  相似文献   

7.
8.
This review summarises the major factors that affect the post-mortem history of skeletons in a coral reef environment. Skeletal material is traced from life, through death, breakdown, transport, burial and diagenesis to its final fossil form. The fact that most reef sediments are of skeletal composition poses problems of concentration or dilution of individual grain types in taphonomic analysis of reefs. Rates of supply of grains vary, not only with organism abundance and skeletal growth rates, but also with rates of physical and biological breakdown to transportable sediment. Physical and organic processes affect sedimentary structures and textures by mixing or segregating skeletal grains, though biogenic processes normally dominate in the protected setting of reef lagoons. The soft and hard substrates associated with reefs present different media for calcium carbonate accumulation and post-depositional disturbance, for example, loose sediments suffer bioturbation and rocks surfaces suffer bioerosion. The wide range of durability of skeletons and their susceptibility to diagenesis contribute further to the complexities of the preservation of coral reefs.  相似文献   

9.
Biological destruction of coral reefs   总被引:10,自引:3,他引:7  
The major agents of biological destruction of coral reefs can be divided into grazers, etchers and borers. Each of these groups is reviewed on a world wide basis, together with the mechanisms by which they destroy the coral substrate. Rates of bioerosion attributed to major agents of grazers, etchers and borers are given, together with limitations of some of the measurements. Recent work is highlighting the variability in rates of bioerosion both over time and space. Factors which may be responsible for this variability are discussed. Bioerosion is a major factor influencing reef morphology and the ways in which this is achieved is discussed in some detail. Although the review concentrates mainly on present day reefs, some attempt is made to consider the impact of bioerosion on older reefs.  相似文献   

10.
Marine pollution and coral reefs   总被引:4,自引:0,他引:4  
Coral reefs are exposed to many anthropogenic stresses increasing in impact and range, both on local and regional scales. The main ones discussed here are nutrient enrichment, sewage disposal, sedimentation, oil-related pollution, metals and thermal pollution. The stress comprising the main topic of this article, eutrophication, is examined from the point of view of its physiological and ecological mechanisms of action, on a number of levels. Nutrient enrichment can introduce an imbalance in the exchange of nutrients between the zooxanthellae and the host coral, it reduces light penetration to the reef due to nutrient- stimulated phytoplankton growth, and, most harmful of all, may bring about proliferation of seaweeds. The latter rapidly outgrow, smother and eventually replace, the slow-growing coral reef, adapted to cope with the low nutrient concentrations typical in tropical seas.
Eutrophication seldom takes place by itself. Sewage disposal invariably results in nutrient enrichment, but it also enriches the water with organic matter which stimulates proliferation of oxygen-consuming microbes. These may kill corals and other reef organisms, either directly by anoxia, or by related hydrogen sulfide production. Increased sediment deposition is in many cases associated with other human activities leading to eutrophication, such as deforestation and topsoil erosion.
Realistically achievable goals to ensure conservation, and in some instances, rehabilitation of coral reefs are listed.  相似文献   

11.
Coral transplantation has become a potential tool for the restoration of coral cover in degraded reef habitats. Yet, very few investigations have attempted to determine whether there is an advantage for at least two species to be used together in coral transplantation. It is hypothesized that corals would perform better in terms of survival and growth when transplanted in mixed‐ than in single‐species plots. Single‐species plots were compared with combinations of two species at several reef sites, using three separate coral species, namely, Porites cylindrica, Pavona frondifera, and Hydnophora rigida. P. cylindrica performed consistently well in terms of survival whether alone or in the presence of another species. In a stressful environment with strong wave action, P. frondifera performed better when mixed with P. cylindrica than when alone. However, this difference was not evident where wave action was weak. The influence of mixing on the growth rates of H. rigida and P. frondifera transplants could not be examined completely because of high mortality because of predation by the starfish Acanthaster planci and the gastropod Drupella sp. Interestingly, the presence of P. cylindrica appeared to minimize the impact of predation on P. frondifera transplants. The setback caused by predation stresses the importance of other factors that influence the outcome of restoration interventions. Future initiatives should take into consideration management measures when selecting sites in relation to wave action and predators, control predator outbreaks, and use coral species, e.g. P. cylindrica that are less susceptible to predation.  相似文献   

12.
We examined the isotopic signatures (δ13C, δ15N) of fauna living in association with the sponge Spongosorites coralliophaga colonizing coral rubble on cold-water coral reefs in the northeast Atlantic – the shallow inshore (122–131?m collection depth) Mingulay 01 area and the deep offshore (683–800?m) Logachev 02 mound. The δ15N signatures of suspended particulate organic matter and three primary consumers, i.e. Spongosorites coralliophaga, Reteporella beaniana and Parazoanthus anguicomus were used as trophic baselines and the resulting trophic structure was compared. In both regions four trophic levels were distinguished. However, the use of S. coralliophaga or R. beaniana as baselines resulted in a skewed trophic structure due to the enriched δ15Ν signatures of these two species on the Logachev 02 mound. Using suspended particulate organic matter and P. anguicomus as baselines, the Mingulay 01 area communities were characterized by elevated relative biomass of lower trophic levels compared to the Logachev 02 mound. Relative biomass of suspension/filter feeders was also higher at the Mingulay 01 area. The two regions differed significantly with regard to the prevailing environmental conditions: apart from the difference in depth and distance from shore, the Mingulay 01 area was characterized by higher primary production in surface waters, tight pelagic–benthic coupling and higher velocity of bottom currents, and it is hypothesized that these characteristics were the main drivers of the observed differences. This study highlighted that multiple trophic baselines can provide a better interpretation of food-web structure and that the use of sponges or bryozoans as baselines across bathymetric gradients should be avoided.  相似文献   

13.
14.
15.
The decline of coral reefs has been broadly attributed to human stressors being too strong and pervasive, whereas biological processes that may render coral reefs fragile have been sparsely considered. Here we review several ecological factors that can limit the ability of coral reefs to withstand disturbance. These include: (1) Many species lack the adaptive capacity to cope with the unprecedented disturbances they currently face; (2) human disturbances impact vulnerable life history stages, reducing reproductive output and the supply of recruits essential for recovery; (3) reefs can be vulnerable to the loss of few species, as niche specialization or temporal and spatial segregation makes each species unique (i.e., narrow ecological redundancy); in addition, many foundation species have similar sensitivity to disturbances, suggesting that entire functions can be lost to single disturbances; and (4) feedback loops and extinction vortices may stabilize degraded states or accelerate collapses even if stressors are removed. This review suggests that the degradation of coral reefs is due to not only the severity of human stressors but also the “fragility” of coral reefs. As such, appropriate governance is essential to manage stressors while being inclusive of ecological process and human uses across transnational scales. This is a considerable but necessary upgrade in current management if the integrity, and delivery of goods and services, of coral reefs is to be preserved.  相似文献   

16.
17.
The great sensitivity of coral reefs to climate change has raised concern over their resilience. An emerging body of resilience theory stems largely from research carried out in a single biogeographic region; the Caribbean. Such geographic bias raises the question of transferability of concepts among regions. In this article, we identify factors that might predispose the Caribbean to its low resilience, including faster rates of macroalgal growth, higher rates of algal recruitment, basin-wide iron-enrichment of algal growth from aeolian dust, a lack of acroporid corals, lower herbivore biomass and missing groups of herbivores. Although mechanisms of resilience are likely to be ubiquitous, our analysis suggests that Indo-Pacific reefs would have to be heavily degraded to exhibit bistability or undergo coral-macroalgal phase shifts.  相似文献   

18.
Coral reefs have reconstituted themselves after previous large sea-level variations, and climate changes. For the past 6000 years of unusually stable sea-level, reefs have grown without serious interruptions. During recent decades, however, new stresses threaten localized devastation of many reefs. A new period of global climate change is occurring, stimulated by anthropogenic increases in greenhouse gases. Coral reefs will cope well with predicted sea-level rises of 4.5 cm per decade, but reef islands will not. Higher sea levels will provide corals with greater room for growth across reef flats, but there are no foreseeable mechanisms for reef island growth to keep pace with sea-level rise, therefore many low islands may ultimately become uninhabitable. Climate change will introduce localized variations in weather patterns, but changes to individual reefs cannot be predicted. Reefs on average should cope well with regional climate change, as they have coped with similar previous fluctuations. Air temperature increases of 0.2–0.3 °C/decade will induce slower increases in sea-surface temperatures, which may cause localized, or regional increases in coral bleaching. Changes in rainfall will impact on reefs near land masses. Likewise, increased storms and variations in El Nino Southern Oscillation (ENSO) may stress some reefs, but not others. The greatest impact of climate change will be a synergistic enhancement of direct anthropogenic stresses (excessive sediment and pollution from the land; over-fishing, especially via destructive methods; mining of coral rock and sand; and engineering modifications), which currently cause most damage to coral reefs. Many of the world's reefs have been degraded and more will be damaged as anthropogenic impacts increase under the ‘demophoric’ increases in population (demos) and economic (phoric) activity. This biotic and habitat loss will result in severe economic and social losses. Reefs, however, have considerable recovery powers and losses can be minimized by effective management of direct human impacts and reducing indirect threats of global climate change.  相似文献   

19.
Coral Reefs - Coral reefs are undergoing precipitous decline due to coral bleaching and disease following warming events, with impacted reefs often shifting from coral to macroalgal dominance. We...  相似文献   

20.
Science management of the world's fragile coral reefs   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号