首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of cis-epoxysuccinate hydrolase-containing E. coli for d(−)-tartaric acid production was screened by various methods. The highest recovery of activity was obtained by entrapment in κ-carrageenan gel. 23.6 g biomass/l and 43.4 g κ-carrageenan/l were the best immobilization conditions optimized by response surface methodology with 83% yield (114 U/g). Cell autolysis was observed after immobilization. Immobilized cells showed high pH (5–10) stability, thermal (up to 65°C) stability, conversion rate (>99.5%), enantioselectivity (ee > 99.6%), and were less affected by metal ions and surfactants compared with free cells. Conversion rate for immobilized cells preserved 93% after 10 repeated batches (5% for free cells).  相似文献   

2.
l-Glutamate decarboxylase (GAD) transforms l-glutamate into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene(s) can synthesize GABA from its own produced l-glutamate. To enhance GABA production in recombinant C. glutamicum strain SH, metabolic engineering strategies were used to improve the supply of the GABA precursor, l-glutamate. Five new strains were constructed here. First, the ppc gene was coexpressed with two GAD genes (gadB1 and gadB2). Then, the mdh gene was deleted in C. glutamicum SH. Next, gadB1-gadB2 and gadB1-gadB2-ppc co-expression plasmids were transformed into C. glutamicum strains SH and Δmdh, resulting in four recombinant GAD strains SE1, SE2, SDE1, and SDE2, respectively. Finally, the mdh gene was overexpressed in mdh-deleted SDE1, generating the mdh-complemented GAD strain SDE3. After fermenting for 72 h, GABA production increased to 26.3?±?3.4, 24.8?±?0.7, and 25.5?±?3.3 g/L in ppc-overexpressed SE2, mdh-deleted SDE1, and mdh-deleted ppc-overexpressed SDE2, respectively, which was higher than that in the control GAD strain SE1 (22.7?±?0.5 g/L). While in the mdh-complemented SDE3, GABA production decreased to 20.0?±?0.6 g/L. This study demonstrates that the recombinant strains SE2, SDE1, and SDE2 can be used as candidates for GABA production.  相似文献   

3.
Researchers have expressed increasing interest in the xylanolytic enzymes used in hemicellulose hydrolysis that convert wood and agricultural residues to second-generation biofuels. In our study, 32 isolates showed clear hydrolysis zones on agar plates containing xylan after Congo red staining. Among these isolates, strain LY-62 exhibited the highest β-xylosidase activity (1.29?±?0.05 U/mL). According to the phylogenetic analysis of the 16S rDNA, strain LY-62 belongs to the Enterobacter genus. Using a combination of electron microscopy, Gram-staining, and conventional physiological and biochemical examinations, the strain LY-62 was identified as Enterobacter ludwigii. The β-xylosidase gene from Enterobacter ludwigii LY-62 was cloned, and the full-length protein was expressed in Escherichia coli as an N-terminal or C-terminal His-tagged fusions protein. Optimal β-xylosidase activity was achieved at pH 7.0 and 40 °C. The Michaelis constant KM values for His-Xyl62 and Xyl62-His were 1.55 and 2.8 mmol/L, respectively. The kcat values for His-Xyl62 and Xyl62-His were 8.51 and 6.94 s?1, respectively. The catalytic efficiencies of His-Xyl62 and Xyl62-His were 5.49 and 2.48 s?1?×?mM?1, respectively. Thus, Xyl62 is a functional β-xylosidase, and our study represents the first report of a β-xylosidase from Enterobacter ludwigii.  相似文献   

4.
Root segments from seedlings of Panax ginseng produced adventitious roots directly when cultured on 1/2 MS solid medium lacking NH4NO3 and containing 3.0 mg l−1 IBA. Using this adventitious root formation, we developed rapid and efficient transgenic root formation directly from adventitious root segments in P. ginseng. Root segments were co-cultivated with Agrobacterium tumefaciens (GV3101) caring β-glucuronidase (GUS) gene. Putative transgenic adventitious roots were formed directly from root segments on medium with 400 mg l−1 cefotaxime and 50 mg l−1 kanamycin. Kanamycin resistant adventitious roots were selected and proliferated as individual lines by subculturing on medium with 300 mg l−1 cefotaxime and 50 mg l−1 kanamycin at two weeks subculture interval. Frequency of transient and stable expression of GUS gene was enhanced by acetosyringon (50 mg l−1) treatment. Integration of transgene into the plants was confirmed by the X-gluc reaction, PCR and Southern analysis. Production of transgenic plants was achieved via somatic embryogenesis from the embryogenic callus derived from independent lines of adventitious roots. The protocol for rapid induction of transgenic adventitious roots directly from adventitious roots can be applied for a new Agrobacterium tumefaciens-mediated genetic transformation protocol in P. ginseng.  相似文献   

5.
Glycoside hydrolases form hyperthermophilic archaea are interesting model systems for the study of catalysis at high temperatures and, at the moment, their detailed enzymological characterization is the only approach to define their role in vivo. Family 29 of glycoside hydrolases classification groups α-l-fucosidases involved in a variety of biological events in Bacteria and Eukarya. In Archaea the first α-l-fucosidase was identified in Sulfolobus solfataricus as interrupted gene expressed by programmed −1 frameshifting. In this review, we describe the identification of the catalytic residues of the archaeal enzyme, by means of the chemical rescue strategy. The intrinsic stability of the hyperthermophilic enzyme allowed the use of this method, which resulted of general applicability for β and α glycoside hydrolases. In addition, the presence in the active site of the archaeal enzyme of a triad of catalytic residues is a rather uncommon feature among the glycoside hydrolases and suggested that in family 29 slightly different catalytic machineries coexist.  相似文献   

6.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

7.

Objectives

To characterize a novel membrane-bound d -amino acid dehydrogenase from Proteus mirabilis JN458 (PmDAD).

Results

The recombinant PmDAD protein, encoding a peptide of 434 amino acids with a MW of 47.7 kDa, exhibited broad substrate specificity with d -alanine the most preferred substrate. The K m and V max values for d -alanine were 9 mM and 20 μmol min?1 mg?1, respectively. Optimal activity was at pH 8 and 45 °C. Additionally, this PmDAD generated H2O2 and exhibited 68 and 60% similarity with E. coli K12 DAD and Pseudomonas aeruginosa DAD, respectively, with low degrees of sequence similarity with other bacterial DADs.

Conclusions

d-Amino acid dehydrogenase from Proteus mirabilis JN458 was expressed and characterized for the first time, DAD was confirmed to be an alanine dehydrogenase.
  相似文献   

8.
Tao F  Luo Y  Huang Q  Liu Y  Li B  Zhang G 《Amino acids》2009,37(4):603-607
l-β-Haloalanines are physiologically active unnatural amino acids and they are useful intermediates for the synthesis of natural and unnatural amino acids, S-linked glycopeptides, and lanthionines. In general l-β-haloalanines were prepared predominantly from l-serine via functional group transformation. Here we reported an alternative approach for the preparation of l-β-haloalanines via halogenation of protected l-cysteine esters which was obtained from l-cysteine or l-cystine, respectively. The mercapto group of protected l-cysteine esters was efficiently transformed to halo groups by triphenylphosphine/N-halosuccinimides. It has been proved to be a versatile desulfurization strategy via this functional group transformation.  相似文献   

9.
(R)-(−)-Mandelic acid (R-MA) is an important intermediate with broad uses. Recently, R-MA production using nitrilase has been gaining more and more attention due to its higher productivity and enantioselectivity. In this work, a new bacterium WT10, which exhibited favorable nitrilase activity and excellent enantioselectivity for production of R-MA by enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrile, was isolated and identified as a strain of Alcaligenes faecalis. In order to improve its nitrilase activity for industrial application, the wild-type strain WT10 was further subjected to mutagenesis using a combined LiCl–ultraviolet irradiation and low energy N+ ion beams implantation technique. A valuable mutant strain A. faecalis ZJUTB10 was obtained. The nitrilase specific activity of the mutant strain was greatly improved up to 350.8 U g−1, in comparison with wild-type strain WT10 of 53.09 U g−1. The reaction conditions for R-MA production by mutant strain A. faecalis ZJUTB10 were also optimized. Nitrilase activity in mutant strain showed a broad pH optimum at pH 7.7–8.5. The optimal temperature was 35°C. The highest production rate reached 9.3 mmol h−1 g−1. The results showed that mutant strain A. faecalis ZJUTB10 was a new candidate for efficient R-MA production from (R,S)-mandelonitrile and could potentially be used in industrial production.  相似文献   

10.
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant, KAM-4, the GPD1 gene, which encodes a glycerol 3-phosphate dehydrogenase of S. cerevisiae to synthesize glycerol, was deleted. The mutant KAM-12 had the GLT1 gene (encodes glutamate synthase) placed under the PGK1 promoter while harboring the GPD1 deletion. Notably, overexpression of GLT1 by the PGK1 promoter along with GPD1 deletion resulted in a 10.8% higher ethanol production and a 25.0% lower glycerol formation compared to the wild type in anaerobic fermentations. The growth rate of KAM-4 was slightly lower than that of the wild type under the exponential phase whereas KAM-12 and the wild type were indistinguishable in the biomass concentration at the end of growth period. Meanwhile, dramatic reduction of formation of acetate and pyruvic acid was observed in all the mutants compared to the wild type.  相似文献   

11.
A lectin present in seeds of Clitoria ternatea agglutinated trypsin-treated human B erythrocytes. The sugar specificity assay indicated that lectin belongs to Gal/Gal NAc-specific group. Hence the lectin, designated C. ternatea agglutinin (CTA), was purified by the combination of acetic acid precipitation, salt fractionation and affinity chromatography. HPLC gel filtration, SDS-polyacrylamide gel electrophoresis and mass spectrometry indicated that the native lectin is composed of two identical subunits of molecular weight 34.7 kDa associated by non covalent bonds. The N-terminal sequence of CTA shared homology with Glycine max and Pisum sativum. Complete sequence was also found to be homologous to S-64 protein of Glycine max, suggesting that CTA probably exhibits both hemagglutination and probably sugar uptake activity. The carbohydrate binding specificity of the lectin was investigated by quantitative turbidity measurements, and percent inhibition assays. Based on these assays, we conclude that CTA binds β-d-galactosides, and also may has an extended specificity towards non-reducing terminal Neu5Acα2,6Gal.  相似文献   

12.
Poly (β-l-malic acid) (PMLA) is a water-soluble polyester with many attractive properties in chemical industry and medicine development. However, the low titer of PMLA in the available producer strains limits further industrialization efforts and restricts its many potential applications. In order to solve this problem, a new strain with the distinguished high productivity of PMLA was isolated from fresh plants samples. It was characterized as the candidate of Aureobasidium pullulans based on the morphology and phylogenetic analyses of the internal transcribed spacer sequences. After the optimization of culture conditions, the highest PMLA concentration (62.27 g l−1) could be achieved in the shake flask scale. In addition, the contribution of the carbon flux to exopolysaccharide (EPS) and PMLA could be regulated by the addition of CaCO3 in the medium. This high-level fermentation process was further scaled up in the 10 l benchtop fermentor with a high PMLA concentration (57.2 g l−1) and productivity (0.35 g l−1 h−1), which are the highest level in all the literature. Finally, the suitable acid hydrolysis conditions of PMLA were also investigated with regard to the production of l-malic acid, and the kinetics of PMLA acid hydrolysis was modeled to simulate the whole degradation process. The present work paved the road to produce this multifunctional biomaterial (PMLA) at industrial scale and promised one alternative method to produce l-malic acid in the future.  相似文献   

13.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

14.
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions, several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene. Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.  相似文献   

15.
We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.  相似文献   

16.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

17.
Previously, we have described the use of phage display to generate high affinity disulfide bond-linked T cell receptors (TCRs). The affinities of the mutant TCRs were analysed after refolding of separately expressed α and β chains from Escherichia coli inclusion bodies. This approach is only suitable for the analysis of small numbers of TCR variants. An attractive alternative would be soluble expression within the bacterial periplasm, but the generic production of TCRs within the E. coli periplasm has so far not proved successful. Here we show that functional, soluble TCR can be produced within the cytoplasm of trxB gor mutant E. coli strains, with maximum yields of 3.4 mg/l. We also investigated the effect of coexpressing the folding modulators Skp and DsbC finding that the TCR expression levels were largely unaffected by these chaperones. Importantly, we demonstrated that the amount of protein purified from 50 ml starter cultures was sufficient to show functionality of the TCR by specific antigen binding in both ELISA and surface plasmon resonance (SPR) assays. This TCR production method has the potential to allow rapid and medium throughput analysis of affinity-matured TCRs selected from TCR phage display libraries.  相似文献   

18.
The mechanism preferentially regulating accumulation of raffinose family oligosaccharides (RFOs) or galactosyl cyclitols in legume seeds still remains unknown. The broad range of raffinose family oligosaccharides and galactosyl pinitols in the composition of seeds of Vicia genus gives researchers an exceptional opportunity for investigations on relationships in biosynthesis of both types of α-d-galactosides. Feeding explants of Vicia species radically different in the composition of RFOs and galactosyl pinitols with basic galactose acceptors, sucrose (for RFOs) or cyclitols (for galactosyl cyclitols) can be a helpful method for assessment of their regulatory role in accumulation of α-d-galactosides in seeds. Garden vetch (Vicia sativa L.) seeds, naturally accumulating RFOs, demonstrated an ability to take up and use exogenously applied d-pinitol and d-chiro-inositol for synthesis of their mono-, di- and tri-galactosides. Together with the accumulation of new galactosides, the concentration of RFOs decreased. In fine-leaved (Vicia tenuifolia Roth.) vetch seeds such a remarkably high concentration of galactosyl pinitols (GPs) was discovered that they nearly replaced RFOs, which is unique among legumes. If the accumulation of both types of galactosides is correlated with concentration of galactose acceptors, elevated levels of sucrose or myo-inositol should promote accumulation of RFOs, instead of GPs. Unexpectedly, feeding fine-leaved vetch raceme explants with myo-inositol or sucrose promoted accumulation of GPs, but not of RFOs. Our comparison of accumulation and biosynthesis of both types of galactosides (RFOs and GPs) throughout development and maturation of seeds from fine-leaved vetch has indicated that preferential accumulation of GPs is associated with the drying of seeds during maturation. Different patterns in activities of enzymes engaged in RFOs’ biosynthetic pathway and galactosyltransferases involved in biosynthesis of GPs indicated that distinct forms of enzymes can operate in both pathways. The feeding of explants with d-chiro-inositol causes accumulation of fagopyritols B1 in seeds of both Vicia species, which suggests presence of the same or a similar form of galactinol synthase. Accumulation of fagopyritols in fine-leaved vetch seeds did not affect accumulation of RFOs or galactosyl pinitols.  相似文献   

19.
Geosmin, an off-flavour of some rotten grapes, has been implicated in wine defects. Botrytis cinerea and Penicillium expansum were the most common among the numerous microorganisms isolated from rotten grapes. P. expansum produces geosmin on model media but not healthy grape juice. However, geosmin synthesis by P. expansum was demonstrated in grape juice and on crushed grapes that had been pre-cultured with certain B. cinerea strains. 34 out of 156 B. cinerea strains ([bot +] phenotype) isolated from the centre of grape bunches were able to induce high geosmin production, up to 494 ng/l, by P. expansum in grape juice. A study of the impact of grape juice composition on geosmin synthesis by P. expansum revealed the importance of nitrogen composition, particularly amino-acid deficiency. Metabolism of amino acids by B. cinerea was shown to be favourable to geosmin synthesis by P. expansum. However, the amino-acid and ammonium concentrations in grape juices pre-cultured with B. cinerea [bot -] and [bot +] strains were very similar implying that other factors are involved as well. Indeed, an ethanol-precipitable fraction, probably a polysaccharide, synthesized by B. cinerea [bot -], but not [bot +] strains, inhibited geosmin production by P. expansum.  相似文献   

20.
Four aryl-phospho--d-glucosidases were identified in Bacillus subtilis by using 4-methylumbelliferyl-phospho--d-glucopyranoside as a substrate. Two of these enzymes are the products of the bglA and bglH genes, previously suggested to encode aryl-phospho--d-glucosidases, while the other enzymes are encoded by the yckE and ydhP genes. Together, these four genes account for >99.9% of the glucosidase activity in B. subtilis on aryl-phospho--d-glucosides. yckE was expressed at a low and constant level during growth, sporulation, and spore germination, and was not induced by aryl--d-glucosides. ydhP was also not induced by aryl--d-glucosides. However, while ydhP was expressed at only a very low level in exponential-phase cells and germinating spores, this gene was expressed at a higher levels upon entry into the stationary phase of growth. Strains lacking yckE or ydhP exhibited no defects in growth, sporulation, or spore germination or in growth on aryl--d-glucosides. However, a strain lacking bglA, bglH and yckE grew poorly if at all on aryl--d-glucosides as the sole carbon source.Abbreviations MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl--d-glucopyranoside - MUGal 4-Methylumbelliferyl--d-galactopyranoside - MUG-P 4-Methylumbelliferyl--d-glucopyranoside-6-phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号