首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The changes in intracellular Ca2+ concentration [( Ca2+]i) of hepatocytes induced by certain bile acids are biphasic: an initial increase is followed by a more gradual decrease. This latter decline in [Ca2+]i may be due to an efflux of Ca2+ across the plasma membrane. This hypothesis was tested by studying the effect of different bile acids on the efflux of 45Ca from preloaded rat hepatocytes and isolated perfused rat livers. The following bile acids were studied: cholic (C), ursodeoxycholic (UDC), chenodeoxycholic (CDC), and deoxycholic (DC) acids; their taurine (T) conjugates (TC, TUDC, TCDC, and TDC); and the taurine, sulfate (S), and glucuronide (Glu) derivatives of lithocholic acid (TLC, LS, TLS, and LGlu, respectively). At 0.3 mM, all bile acids except C, TC, TCDC, UDC, and TUDC significantly increased 45Ca efflux from preloaded hepatocytes without affecting cell viability. Dose-response studies revealed that the minimum effective concentration needed to induce 45Ca efflux was 0.06 mM for LS, 0.8 mM for TCDC, and 10 mM for TC. Efflux of 86Rb from preloaded hepatocytes was not significantly altered by 0.1 mM LS, indicating relative specificity for calcium. TDC and DC, but not TC, increased 45Ca efflux from preloaded perfused rat livers. These results showed that bile acids known to increase [Ca2+]i (CDC, DC, TDC, and TLC) also increased 45Ca efflux from hepatocytes and perfused livers and that efflux was also stimulated by LS, TLS, and LGlu. The extent of this efflux was related to the hydrophobicity of the steroid nucleus of the bile acid. It is speculated that bile acid-induced increases in [Ca2+]i activate the plasma membrane Ca2+ pump resulting in increased Ca2+ efflux.  相似文献   

2.
3.
Bile secretion in hemoglobin-free perfused rat liver   总被引:3,自引:0,他引:3  
Hemoglobin-free perfused rat liver was demonstrated to be a suitable experimental model in studying bile secretion. Bile flow slowly decreased to more than 3 h of perfusion. Despite differences in metabolic states, the bile flow was the same in the recirculating as in the nonrecirculating mode of perfusion. Sulfobromophthalein stimulated bile flow at high rates of infusion. In bile, the ratio conjugated to unconjugated sulfobromophthalein also increased with sulfobromophthalein infusion rate. The access of [14C]insulin, [14C] sucrose, and inorganic [32P] phosphate from perfusate into bile was restricted. Bile flow, secretion of taurocholate and sulfobromophthalein, and bile pressure are compared with values from anesthetized animals and from isolated livers perfused with medium containing erythrocytes.  相似文献   

4.
5.
The microtubule poison, colchicine, caused an abnormal output of a variety of proteins into rat bile. After 3 h of exposure to the drug, livers were isolated and perfused with media of defined protein composition. There was no essential change in permeability of the hepatobiliary system to proteins (e.g. bovine serum albumin) entering bile from the perfusion fluid. The rat (serum) albumin and fibrinogen that were secreted into bile from colchicine-treated livers were probably derived from the hepatocytes. Disruption of the microtubular system reduces the secretion of proteins at the sinusoidal face of the hepatocyte and results in an accumulation of secretory vesicles in the cytoplasm. It is suggested that under these conditions some of the vesicles discharge their contents into the bile canaliculus.  相似文献   

6.
The output of proteins into bile was studied by using isolated perfused rat livers. Replacement of rat blood with defined perfusion media deprived the liver of rat serum proteins (albumin, immunoglobulin A) and resulted in a rapid decline in the amounts of these proteins in bile. When bovine serum albumin was incorporated into the perfusion medium it appeared in bile within 20 min and the amount in the bile was determined by the concentration of the protein in the perfusion medium. The use of a defined perfusion medium also deprived the livers of bile salts and the amounts of these, and of plasma-membrane enzymes [5'-nucleotidase (EC 3.1.3.5) and phosphodiesterase I], in bile declined rapidly. Introduction of micelle-forming bile salts (taurocholate or glycodeoxycholate) to the perfusion medium 80 min after liver isolation markedly increased the output of plasma-membrane enzymes but had no effect on the other proteins. The magnitude of this response was dependent on the bile salt used and its concentration in bile; there was little effect on plasma-membrane enzyme output until the critical micellar concentration of the bile salt had been exceeded in the bile. A bile salt analogue, taurodehydrocholate, which does not form micelles, did not produce the enhanced output of plasma-membrane enzymes. This work supports the view that the output of plasma-membrane enzymes in bile is a consequence of bile salt output and also provides evidence for mechanisms by which serum proteins enter the bile.  相似文献   

7.
Maximal heme occupancy, the maximal proportion of total catalase heme present in the form of Compound I, is found to be 0.4 both in the enzyme isolated from rat liver and in the peroxisomal enzyme as present in the intact cells of perfused rat liver. This indicates that the ratio of second order rate constants for catalatic decomposition and for formation of Compound I, k4′k1, is equal in vitro and in vivo.Catalase was isolated from rat liver, and the extinction coefficients for Compound I and for cyanide-catalase at 640 minus 660 nm were determined. The measurement of heme occupancy of catalase in hemoglobin-free perfused rat liver was made possible by wavelength scanning as well as by dual wavelength absorbance photometry. Thus, Compound I and cyanide-catalase were demonstrated in the red region and in the Soret band region.Meeting the particular needs of organ photometry, specific metabolic transitions were used to visualize specific transitions of absorbing pigments. Compound I is specifically demonstrated by its decomposition by the hydrogen donor, methanol. A measure for total catalase heme is provided by formation of cyanide-catalase. The cyanide concentrations required are well below appearance of possible interference by other cyanide-binding hemoproteins at 640–660 nm.  相似文献   

8.
9.
10.
1. Isolated rat liver was perfused with heparinized whole blood under physiological pressure resulting in the secretion of bile at about the rate observed in vivo. 2. The preparation remained metabolically active for 4h and was apparently normal in function and microscopic appearance. 3. When the perfusate plasma and liver cholesterol pool was labelled by the introduction of [2-(14)C]mevalonic acid the specific radioactivity of the perfusate cholesterol increased. The biliary acids (cholic acid and chenodeoxycholic acid) were labelled and had the same specific radioactivity. 4. Livers removed from rats immediately after, and 40h after, the start of total biliary drainage, were perfused; increased excretion rates of both cholic acid and chenodeoxycholic acid were found when the liver donors had been subjected to biliary drainage. 5. The incorporation of [2-(14)C]mevalonic acid or rat lipoprotein labelled with [(14)C]cholesterol into bile acids was studied. 6. A dissociation between the mass of bile acid excreted and the rate of incorporation of (14)C was found. This was attributed to the changing specific radioactivity of the cholesterol pool acting as the immediate bile acid precursor.  相似文献   

11.
12.
13.
Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved. Experiments with isolated perfused liver gave direct evidence that the overall conversion of sitosterol into C21 bile acids occurs in this organ. Intravenously injected 7 alpha,7 beta-3H-labeled campesterol gave a product pattern identical to that of 4-14C-labeled sitosterol. Possible mechanisms for hepatic conversion of sitosterol and campesterol into C21 bile acids are discussed.  相似文献   

14.
15.
The viability of hemoglobin-free perfused rat liver was examined with respect to several liver functions and to the intactness of subcellular structures under electron microscopic observation. Provided that rat livers were perfused with the oxygenated buffer solution at a flow rate between 3 and 3.5 ml/min per g of liver, all the biochemical parameters measured in the perfused liver system, i.e. the rates of glucose, pyruvate, and lactate production, the rate of oxygen consumption and the tissue contents of adenine nucleotides, were similar to those observed with perfusion systems containing erythrocytes or albumin. The perfused liver showed a sensitive response to norepinephrine, involving a reduction of pyridine nucleotides and enhancements of glucose production and oxygen consumption. On electron microscopic examination, changes in hepatic-structure indicative of hypoxic injury particularly vacuolar degeneration and mitochondrial swelling, were not detected in the liver after 70 min of perfusion; the fact that the fine structure of the hepatocyte was preserved in all parts of the organ confirmed that the supply of oxygen to the perfused liver was sufficient under the conditions employed. From viewpoint of the generally accepted criteria for the viability of perfused liver, therefore, the results confirmed that the perfusion of liver with a hemoglobin- and albumin-free medium is a convenient and reliable tool for biochemical investigation of the reactions occurring in whole liver.  相似文献   

16.
Henry Danielsson 《Steroids》1973,22(5):667-676
Various taurine-conjugated bile acids were fed to rats at the 1%-level in the diet for 3 or 7 days and the effect on several hydroxylations involved in the biosynthesis and metabolism of bile acids was studied. The hydroxylations studied were all catalyzed by the microsomal fraction of liver homogenate fortified with NADPH. The 7α-hydroxylation of cholesterol was inhibited by feeding taurocholic acid, taurocheno-deoxycholic acid and taurodeoxycholic acid for 3 as well as 7 days. No marked inhibition was obtained with taurohyodeoxycholic acid or taurolithocholic acid. The 12α-hydroxylation of 7α-hydroxy-4-cholesten-3-one was inhibited after 3 as well as 7 days by all bile acids except taurohyodeoxycholic acid. With this acid a marked stimulation of 12α-hydroxylation was observed. The effects of the different bile acids on the 7α-hydroxylation of taurodeoxycholic acid were not very marked. The 6β-hydroxylation of lithocholie acid and taurochenodeoxycholic acid was stimulated by taurocholic acid and taurodeoxycholic acid. The reaction was inhibited by taurochenodeoxycholic acid, at least after 7 days. Taurohyodeoxycholic acid inhibited the 6β-hydroxylation slightly and taurolithocholic acid had no effect. The results were discussed in the light of present knowledge concerning mechanisms of regulation of formation and metabolism of bile acids and it was suggested that the mechanisms may be more complex than previously thought.  相似文献   

17.
Effects of hormones on cyclic AMP release in perfused rat livers   总被引:2,自引:0,他引:2  
J Kuster  J Zapf  A Jakob 《FEBS letters》1973,32(1):73-77
  相似文献   

18.
19.
The activation of hepatic glycogenolysis by glucagon and metabolic inhibitors was studied in isolated perfused livers from fed rats. Glucose production rates and phosphorylase activity were increased by all these agents. If iodoacetate (1 mM) and cyanide (1 mM) were infused simultaneously, glycogenolysis was activated to the same extent as by glucagon (1 nM). The effects of the hormone were additive to those of cyanide, but not to those of iodoacetate. When glycogen breakdown was maximally activated by cyanide plus glucagon, additional iodoacetate was inhibitory. The glucagon-induced release of cyclic AMP into the perfusate was partially suppressed by iodoacetate. The inhibitors caused various degrees of depletion of the tissue ATP content and parallel augmentation of the AMP levels. ADP rose to a lesser extent. Indirect evidence suggested that of a progressive lowering of the cellular ATP levels was accompanied by an inhibition of enzyme dephosphorylation as well as of phosphorylation processes. However, dephosphorylation appeared to be more sensitive to changes of the energy balance, resulting in an activation of phosphorylase in response to the metabolic inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号