首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADPH-cytochrome P-450 oxidoreductase (EC 1.6.2.4) was purified from the microsomal fraction of tobacco (Nicotiana tabacum) BY2 cells by chromatography on two anion-exchange columns and 2′,5′ ADP-Sepharose 4B column. The purified enzyme showed a single protein band with a molecular weight of 79 kDa on SDS-PAGE and exhibited a typical flavoprotein redox spectrum, indicating the presence of an equimolar quantity of FAD and FMN. This enzyme followed Michaelis-Menten Kinetics with Km values of 24 μM for NADPH and 16 μM for cytochrome c. An in vitro reconstituted system of the purified reductase with a partially purified tobacco cytochrome P-450 preparation showed the cinnamic acid 4-hydroxylase activity at the rate of 14 pmol min −1nmol−1 P-450 protein and with a purified rabbit P-4502C14 catalyzed N-demethylation of aminopyrine at the rate of 6 pmol min−1 lnmo−1 P-450 protein. Polyclonal antibodies raised against the purified reductase reacted with tobacco reductase but not with yeast reductase on Western blot analysis. Anti-yeast reductase antibodies did not react with the tobacco reductase. This result indicate that the tobacco reductase was immunochemically different from the yeast reductase. The anti-tobacco reductase antibodies totally inhibited the tobacco reductase activity, but not the yeast reductase. Also, Western blot analyses using the anti-tobacco reductase antibodies revealed that leaves, roots and shoots of Nicotiana tabacum plants contained an equal amount of the reductase protein. From these results, it was suggested that there are different antibody binding sites, which certainly participate in enzyme activity, between tobacco and yeast reductase.  相似文献   

2.
NADPH-cytochrome P-450 reductase has been purified to apparent homogeneity from liver microsomes of β-naphthoflavone-treated rats and rainbow trout. The apparent monomeric molecular weights were 75,000 and 77,000 for the rat and trout, respectively. Differences in amino acid composition were observed, particularly for lysine, glycine, threonine, and tyrosine. Analysis of the flavin composition showed that there were 0.97 mol of FAD and 0.92 mol of FMN per mol of rat reductase, whereas the values for the trout enzyme were 1.06 and 0.76 for FAD and FMN, respectively. Trout NADPH-cytochrome c reductase was inhibited by anti-rat antibody, but not to the same extent as was the rat enzyme. No precipitin lines between the trout reductase and rat antibody were observed on Ouchterlony plates. Peptide patterns, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, following limited proteolysis were also markedly different. The trout enzyme was as effective, catalytically, as the rat enzyme in a reconstituted system that contained purified rat cytochrome P-448 and lipid. Comparison of ethoxyresorufin-O-deethylase temperature profiles with various combinations of purified trout and rat P-448, reductase, and lipid, in membranous and nonmembranous reconstitution systems, demonstrated that the lower temperature optimum in trout microsomes could only be reproduced when all three trout components were incorporated into liposomes. These results suggest that it is the structural organization of the mixed-function oxidase enzymes and lipid within trout microsomes which were responsible for the lower temperature optimum compared to rat.  相似文献   

3.
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes.  相似文献   

4.
The interactions between purified microsomal cytochrome P-450 and cytochrome b5 has been demonstrated by aqueous two-phase partition technique. Major forms of cytochrome P-450 induced by phenobarbital (P-450LM2) and β-naphthoflavone (P-450LM4) are almost exclusively distributed in the dextran-rich bottom phase (partition coefficient, K = 0.06), whereas NADPH-cytochrome P-450 reductase and cytochrome b5 are mainly distributed in the polyethylene glycol-rich top phase (K = 3.5 and 2.5, respectively), when these enzymes were partitioned separately in the dextran-polyethylene glycol two-phase system. The mixing of P-450LM with cytochrome b5 changes the partition coefficients of both P-450LM and cytochrome b5 indicating that molecular interaction between P-450LM and cytochrome b5 occurred. Complex formation was also confirmed by optical absorbance difference spectral titration, and the stimulation of the P-450LM-dependent 7-ethoxycoumarin and p-nitrophenetole O-deethylase activities by equal molar quantity of detergent-solubilized cytochrome b5, but not trypsin-solubilized enzyme, in the reconstituted system. Cytochrome b5 decreases the Km's of both substrates for P-450LM2-dependent O-deethylations and increases the V's of both reactions by two- to three-fold. This stimulatory effect requires the presence of phospholipid in the reconstituted enzyme system. These results suggest that cytochrome b5 plays a role in some reconstituted drug oxidation enzyme systems and that molecular interactions among cytochrome P-450, reductase, and cytochrome b5 are catalytically competent in the electron transport reactions.  相似文献   

5.
Midpoint reduction potentials for the flavin cofactors in human NADPH-cytochrome P450 oxidoreductase were determined by anaerobic redox titration of the diflavin (FAD and FMN) enzyme and by separate titrations of its isolated FAD/NADPH and FMN domains. Flavin reduction potentials are similar in the isolated domains (FAD domain E(1) [oxidized/semiquinone] = -286 +/- 6 mV, E(2) [semiquinone/reduced] = -371 +/- 7 mV; FMN domain E(1) = -43 +/- 7 mV, E(2) = -280 +/- 8 mV) and the soluble diflavin reductase (E(1) [FMN] = -66 +/- 8 mV, E(2) [FMN] = -269 +/- 10 mV; E(1) [FAD] = -283 +/- 5 mV, E(2) [FAD] = -382 +/- 8 mV). The lack of perturbation of the individual flavin potentials in the FAD and FMN domains indicates that the flavins are located in discrete environments and that these environments are not significantly disrupted by genetic dissection of the domains. Each flavin titrates through a blue semiquinone state, with the FMN semiquinone being most intense due to larger separation (approximately 200 mV) of its two couples. Both the FMN domain and the soluble reductase are purified in partially reduced, colored form from the Escherichia coli expression system, either as a green reductase or a gray-blue FMN domain. In both cases, large amounts of the higher potential FMN are in the semiquinone form. The redox properties of human cytochrome P450 reductase (CPR) are similar to those reported for rabbit CPR and the reductase domain of neuronal nitric oxide synthase. However, they differ markedly from those of yeast and bacterial CPRs, pointing to an important evolutionary difference in electronic regulation of these enzymes.  相似文献   

6.
NADPH-cytochrome c reductase [NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4] was highly purified from the membrane fraction of porcine polymorphonuclear leukocytes by column chromatographies on DEAE cellulose DE-52, 2',5'-ADP-agarose, Sephacryl S-300, and Bio-gel HTP. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, the purified preparation gave a main band with a molecular weight of 80,000. The enzyme contained 0.79 mol of FAD and 0.88 mol of FMN per mol, and was capable of exhibiting a benzphetamine N-demethylation activity in the presence of cytochrome P-450 purified from rabbit liver microsomes and dilauroylphosphatidylcholine, as is the case with liver NADPH-cytochrome P-450 reductase. The cytochrome c reductase activity of the polymorphonuclear leukocytes (PMN) enzyme was precipitated with rabbit anti-guinea pig liver NADPH-cytochrome P-450 reductase IgG followed by addition of guinea pig anti-rabbit IgG antibody. The biochemical and immunological properties of the PMN enzyme so far examined were similar to those of the liver enzyme, although its function in leukocytes has not yet been determined.  相似文献   

7.
Summary

The role of the prosthetic groups (FAD and FMN) of NADPH-cytochrome P450 reductase (P450 reductase)in 3-hydroxyanthranilamide (3-OH An.Amide)-catalyzed, NADPH-dependent superoxide anion (O2-) production via the reductase was examined using the native and FMN-depleted preparations of P450 reductase which was partially purified from rat liver microsomes. NADPH-dependent O2-production by the FMN-depleted preparation was about 10% of that by the native preparation. 3-OH An. Amide-catalyzed, NADPH-dependent O2-production by the FMN-depleted preparation was less than 10% of that by the native preparation. FMN supplementation returned O2-production to near normal. We observed the same results for NADPH oxidation and hydrogen peroxide formation. O2-production, NADPH oxidation, and hydrogen peroxide formation were inhibited by native superoxide dismutase (SOD), but not by boiled, denatured SOD. These results indicate that the prosthetic groups, especially FMN, of P450 reductase play a critical role in 3-OH An.Amide-catalyzed, NADPH-dependent O2-production via the reductase.  相似文献   

8.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

9.
A cDNA containing the complete coding nucleotide sequence for rat liver NADPH-cytochrome P-450 oxidoreductase was constructed from two overlapping cDNA clones. This full-length cDNA was inserted into the plasmid expression vector pCQV2, transfected into Escherichia coli, and expressed reductase was identified in cell lysates by electrophoresis followed by electrophoretic transfer to nitrocellulose and immunodetection. Various strains were screened for maximal expression and minimal intracellular degradation of the expressed protein, and strain C-1A was selected for preparation of the expressed enzyme. Induced cells from 12-liter cultures were pelleted, lysed in a French press, and the 50,000g supernate was fractionated by DEAE-cellulose and 2′5′-ADP agarose chromatography. Thirty-five grams of packed cells yielded approximately 2 mg of affinity-purified protein that was essentially free of E. coli proteins. The final preparation exhibited considerable proteolytic degradation and only an estimated 5–10% of the immunoreactive protein was undegraded. Four principal forms could be distinguished upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with molecular weights of 65,000, 66,000, 74,000, and 78,000, the latter being equivalent to that of intact reductase. High-performance liquid chromatography with a Spherogel-DEAE column resolved these forms but resulted in the loss of the 78-kDa form; three peaks eluted with molecular weights of 65,000. Several of the HPLC fractions exhibited cytochrome c reductase activity, indicating correct incorporation of both flavin prosthetic groups, with the 66-kDa form showing the highest specific activity (44 μmol of cytochrome c reduced/mg reductase/min at 22 °C). HPLC assay of flavin content demonstrated equimolar FMN and FAD concentrations, and spectrophotometric analysis of the 66-kDa form revealed a spectrum essentially identical to that of reductase purified from rat liver. When the affinity-purified preparation was reconstituted with cytochrome P-450c, rates of benzo[a]pyrene metabolism approaching rates observed with liver reductase were obtained, indicating that the undegraded component in the affinity-purified preparation was able to interact with cytochrome P-450 and catalyze electron transfer from NADPH.  相似文献   

10.
Ethanol oxidation activity has been reconstituted in a system composed of NADPH-cytochrome c reductase, synthetic dilauroylglycerol-3-phosphorylcholine and cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats. This system is free of alcohol dehydrogenase and catalase activities. Furthermore, sodium azide (1 mm), a catalase inhibitor, is without effect on ethanol metabolism. There is a requirement for both NADPH-cytochrome c reductase and cytochrome P-450 and a partial requirement for phospholipid for ethanol oxidation by the reconstituted system. In addition, both NADPH and O2 are required for catalysis. Under optimal reaction conditions, the rate of acetaldehyde formation if 25 to 50 nmol/min/nmol of cytochrome P-450. Cytochrome P-450 from other sources, including the homogeneous P-450LM2 from phenobarbital-treated rabbits, have also been found to catalyze ethanol oxidation in reconstituted systems. Antibody prepared against cytochrome P-450 inhibits ethanol metabolism in the reconstituted system consistent with a cytochrome P-450-mediated reaction. Furthermore, cumene hydroperoxide can replace both NADPH and NADPH-cytochrome c reductase in ethanol oxidation and catalysis can be demonstrated in a system composed of only cytochrome P-450, lipid, ethanol, and cumene hydroperoxide. These data implicate cytochrome P-450 in the direct oxidation of ethanol by this system.  相似文献   

11.
T Iyanagi  F K Anan  Y Imai  H S Mason 《Biochemistry》1978,17(11):2224-2230
Hepatic microsomal NADPH-cytochrome P-450 reductase was solubilized from rabbit liver microsomes in the presence of detergents and purified to homogeneity by column chromatography. The purified reductase had a molecular weight of 78 000 and contained 1 mol each of FAD and FMN per mol of enzyme. On reduction with NADPH in the presence of molecular oxygen, an 02-stable semiquinone containing one flavin free radical per two flavins was formed, in agreement with previous work on purified trypsin-solubilized reductase. The reduction of oxidized enzyme by NADPH, and autoxidation of NADPH-reduced enzyme by air, proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The reductase reduced cytochrome P-450 (from phenobarbital-treated rabbits) and cytochrome P-448 (from 3-methylcholanthrene-treated rabbits). The rate of reduction of cytochrome P-450 increased in the presence of a substrate, benzphetamine, but that of cytochrome P-448 did not.  相似文献   

12.
Treatment of rabbits with Triacetyloleandomycin (a currently used antibiotic in human therapy) at 1 mmol per kg of body weight daily for 5 days results in a significant induction of liver microsomal cytochrome P-450, (2.6 nmol/mg proteins). Electrophoresis in SDS polyacrylamide gels shows this increase in P-450 is associated to the appearance of a strong band in a zone located between the major bands of microsomes induced by phenobarbital and β-naphtoflavone (LM3 forms in Coon's terminology). Partial purification of this P-450 LM3 (TAO) was undertaken by chromatographic procedures (CM cellulose and hydroxylapatite). Its subunit molecular weight is 52 000; the absolute spectra in the oxidized, ferrous and CO-ferrous forms present maxima at 417, 536, and 570 nm; 415 and 548 nm; 450 and 555 nm respectively. Monooxygenase activity of LM3 (TAO) was compared with that of LM2 and LM4 in a reconstituted system containing NADPH cytochrome P-450 reductase and phosphatidylcholine; the activity of P-450 LM3 (TAO) was higher than that of LM2 and LM4 with chlorcyclizine as a substrate. According to these observations, LM3 (TAO) resembles LM3 (b), a constitutive form of untreated rabbit liver microsomes.  相似文献   

13.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

14.
Properties of purified kidney microsomal NADPH-cytochrome c reductase   总被引:1,自引:0,他引:1  
NADPH-cytochrome c reductase, solubilized by lipase digestion of microsomes prepared from perfused porcine kidney cortex, was purified about 3600-fold to give a turnover number of 1230 nmoles cytochrome c reduced per min per nmole flavin. The kinetic determination of Km and V with respect to NADPH, cytochrome c, and NADH, resulted in values similar to those obtained with purified liver reductase. The kidney microsomal enzyme also exhibited a ping-pong kinetic mechanism for NADPH-mediated cytochrome c reduction.Spectrofluorometric measurements demonstrated the presence of equimolar amounts of FAD and FMN per mole of reductase. The molecular weight was estimated by Sephadex G-200 gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis to be 68,000 and 71,000 g per mole, respectively.Immunochemical techniques, including Ouchterlony double-diffusion studies and inhibition of catalytic activity by antibody to the liver microsomal NADPH-cytochrome c reductase, established the similarity of the purified liver and kidney reductases.  相似文献   

15.
The reduction of the azo dye, amaranth, by rat liver microsomes is inhibited about 90% by carbon monoxide, suggesting that the reaction largely depends on cytochrome P-450. Reducing equivalents for this reaction are supplied by NADPH. This reaction is stimulated by riboflavin, FMN and FAD, as well as by methylviologen. A large fraction of the stimulated reaction is not blocked by CO, indicating that there is a pathway of electron transfer which is dependent of cytochrome P-450. Rat liver microsomes can reduce FAD, with reducing equivalents supplied by NADPH. The FADH2 thus produced is quickly oxidized by amaranth so that two FADH2 are oxidized for every amaranth reduced. The same stoichiometry is observed with photochemically prepared FADH2, formed in the absence of microsomes.  相似文献   

16.
Rabbit pulmonary cytochrome P-450 forms 2,5, and 6 were resolved using anion-exchange high-performance liquid chromatography (HPLC) and their properties compared with rabbit liver cytochrome P-450 isozymes LM2 and LM6. Although rabbit pulmonary form 2 and liver LM2 had similar electrophoretic mobilities and similar substrate specificities in reconstitution experiments, they differed in their HPLC elution profiles. High-performance liquid chromatography of pulmonary microsomes from rabbits treated with 3-methylcholanthrene (3-MC) revealed the induction of form 6 isozyme, which had a retention time, electro-phoretic mobility, and substrate specificity similar to those of rabbit liver LM6. In reconstitution experiments, forms 2 and 6 showed the highest substrate specificities toward benzphetamine and 7-ethoxyresorufin, respectively. Rabbit lung cytochrome P-450 form 5 was relatively inactive toward all substrates tested.  相似文献   

17.
NADPH-cytochrome P-450 reductases from pig liver and kidney and rabbit liver microsomes were purified to a specific activity of 50–62 μmol cytochrome c reduced/min/mg. All reductase preparations were separated into one major and one minor fraction on Sephadex G-200 columns. The molecular weights of the major fractions of the reductases were estimated to be 74,000, 75,000, and 75,500 for rabbit liver, pig kidney, and liver reductases, respectively, whereas the molecular weight of the minor fractions of these reductases, 67,000, was the same as that of the steapsin-solubilized pig liver reductase on SDS-polyacrylamide gel electrophoresis. Km values for NADPH and cytochrome c were: 20 and 29 μm or 14 and 28 μm for the pig kidney or liver reductase, respectively. Immunochemical studies, including Ouchterlony double diffusion experiments and inhibition of benzphetamine N-demethylation activity in microsomes by antibody against pig liver NADPH-cytochrome P-450 reductase, indicated the similarity of the purified liver and kidney reductases. There were no differences in the ability to reconstitute NADPH-mediated benzphetamine N-demethylation and laurate hydroxylation in reconstituted systems between the pig liver and kidney reductases, indicating that the reductase did not determine substrate specificity in these systems.  相似文献   

18.
Stopped flow spectrophotometry has shown the occurrence of two distinct spectral intermediates in the reaction of oxygen with the reduced form of highly purified cytochrome P-450 from liver microsomes. As indicated by difference spectra, Complex I (with maxima at 430 and 450 nm) is rapidly formed and then decays to form Complex II (with a broad maximum at 440 nm), which resembles the intermediate seen in steady state experiments. In the reaction sequence, P-450LMredO2Complex I→Complex II→P-450LMox the last step is rate-limiting. The rate of that step is inadequate to account for the known turnover number of the enzyme in benzphetamine hydroxylation unless NADPH-cytochrome P-450 reductase or cytochrome b5 is added. The latter protein does not appear to function as an electron carrier in this process.  相似文献   

19.
NADPH-cytochrome P-450 reductase was highly purified from liver microsomes of phenobarbital-induced rats by column chromatography on DEAE-cellulose, DEAE-Sephadex A-50, and hydroxylapatite in the presence of deoxycholate or Renex 690, a nonionic detergent. The purified enzyme gave a single major band with a molecular weight of 79,000 daltons on SDS-polyacrylamide gel electrophoresis. FMN and FAD were present in about equal amounts. The most active reductase preparation catalyzed the reduction of 40.9 μmoles of cytochrome c per min per mg of protein and, as an indirect measure of cytochrome P-450 reduction, the oxidation of 2.0 μmoles of NADPH per min per mg of protein in a reconstituted hydroxylation system containing benzphetamine as the substrate.  相似文献   

20.
The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes   总被引:2,自引:0,他引:2  
When rats were kept on a riboflavin-deficient diet, NADPH-cytochrome c and NADPH-ferricyanide reductase activities of the liver microsomes (deficient microsomes) decreased to 27% and 40% of the corresponding controls. To elucidate the unbalanced decrease of these activities in deficient microsomes, enzymological and immunochemical properties of the NADPH-cytochrome P-450 reductase in the liver microsomes of riboflavin-deficient rats were compared with those of control rats. Judging from quantitative immunoprecipitation, the amount of the reductase protein in the deficient microsomes was 67% of control, whereas the FAD and FMN contents in the immunoprecipitates were 110% and 59% of control, respectively. When the reductase was purified from the deficient microsomes, it contained 18.0 and 10.9 nmoles of FAD and FMN, respectively, per mg of protein, while the control enzyme contained 14.5 and 14.3 nmoles of the flavins, respectively. These and other lines of evidence suggest the existence of an abnormal NADPH-cytochrome P-450 reductase, having unbalanced contents of FAD and FMN, in deficient microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号