首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although there exists compelling genetic evidence for a homologous recombination-independent pathway for repair of interstrand cross-links (ICLs) involving translesion synthesis (TLS), biochemical support for this model is lacking. To identify DNA polymerases that may function in TLS past ICLs, oligodeoxynucleotides were synthesized containing site-specific ICLs in which the linkage was between N(2)-guanines, similar to cross-links formed by mitomycin C and enals. Here, data are presented that mammalian cell replication of DNAs containing these lesions was approximately 97% accurate. Using a series of oligodeoxynucleotides that mimic potential intermediates in ICL repair, we demonstrate that human polymerase (pol) kappa not only catalyzed accurate incorporation opposite the cross-linked guanine but also replicated beyond the lesion, thus providing the first biochemical evidence for TLS past an ICL. The efficiency of TLS was greatly enhanced by truncation of both the 5 ' and 3 ' ends of the nontemplating strand. Further analyses showed that although yeast Rev1 could incorporate a dCTP opposite the cross-linked guanine, no evidence was found for TLS by pol zeta or a pol zeta/Rev1 combination. Because pol kappa was able to bypass these ICLs, biological evidence for a role for pol kappa in tolerating the N(2)-N(2)-guanine ICLs was sought; both cell survival and chromosomal stability were adversely affected in pol kappa-depleted cells following mitomycin C exposure. Thus, biochemical data and cellular studies both suggest a role for pol kappa in the processing of N(2)-N(2)-guanine ICLs.  相似文献   

2.
3.
DNA interstrand cross‐links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL (“approach”), a nucleotide is inserted across from the unhooked lesion (“insertion”), and the leading strand is extended beyond the lesion (“extension”). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site‐specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error‐free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1–pol ζ recruitment requires the Fanconi anemia core complex but not FancI–FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair‐associated mutagenesis.  相似文献   

4.
In yeast, Rev1, Rev3, and Rev7 are involved in translesion synthesis over various kinds of DNA damage and spontaneous and UV-induced mutagenesis. Here, we disrupted Rev1, Rev3, and Rev7 in the chicken B-lymphocyte line DT40. REV1-/- REV3-/- REV7-/- cells showed spontaneous cell death, chromosomal instability/fragility, and hypersensitivity to various genotoxic treatments as observed in each of the single mutants. Surprisingly, the triple-knockout cells showed a suppressed level of sister chromatid exchanges (SCEs), which may reflect postreplication repair events mediated by homologous recombination, while each single mutant showed an elevated SCE level. Furthermore, REV1-/- cells as well as triple mutants showed a decreased level of immunoglobulin gene conversion, suggesting participation of Rev1 in a recombination-based pathway. The present study gives us a new insight into cooperative function of three Rev molecules and the Polzeta (Rev3-Rev7)-independent role of Rev1 in vertebrate cells.  相似文献   

5.
Wang S  Wen R  Shi X  Lambrecht A  Wang H  Xiao W 《DNA Repair》2011,10(6):620-628
DNA-damage tolerance (DDT) in yeast is composed of two parallel pathways and mediated by sequential ubiquitinations of PCNA. While monoubiquitination of PCNA promotes translesion synthesis (TLS) that is dependent on polymerase ζ consisted of a catalytic subunit Rev3 and a regulatory subunit Rev7, polyubiquitination of PCNA by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Inactivation of these two pathways results in a synergistic effect on DNA-damage responses; however, this two-branch DDT model has not been reported in any multicellular organisms. In order to examine whether Arabidopsis thaliana possesses a two-branch DDT system, we created rad5a rev3 double mutant plant lines and compared them with the corresponding single mutants. Arabidopsis rad5a and rev3 mutations are indeed synergistic with respect to root growth inhibition induced by replication-blocking lesions, suggesting that AtRAD5a and AtREV3 are required for error-free and TLS branches of DDT, respectively. Unexpectedly this study reveals three modes of genetic interactions in response to different types of DNA damage, implying that plant RAD5 and REV3 are also involved in DNA damage responses independent of DDT. By comparing with yeast cells, it is apparent that plant TLS is a more frequently utilized means of lesion bypass than error-free DDT in plants.  相似文献   

6.
7.
8.
Yeast mutants, snm1 (pso2-1), rev3 (pso1-1), and rad51, which display significant sensitivity to interstrand crosslinks (ICLs) have low relative sensitivity to other DNA damaging agents. SNM1, REV3, and RAD51 were disrupted in the same haploid strain, singly and in combination. The double mutants, snm1 Delta rev3 Delta, snm1 Delta rad51 Delta and rev3 Delta rad51 Delta were all more sensitive to ICLs than any of the single mutants, indicating that they are in separate epistasis groups for survival. A triple mutant displayed greater sensitivity to ICLs than any of the double mutants, with one ICL per genome being lethal. Therefore, Saccharomyces cerevisiae appears to have three separate ICL repair pathways, but no more. S-phase delay was not observed after ICL damage introduced by cisplatin (CDDP) or 8-methoxypsoralen (8-MOP) during the G1-phase, in any of the above mutants, or in an isogenic rad14 Delta mutant deficient in nucleotide excision repair. However, the psoralen analog angelicin (monoadduct damage) induced a significant S-phase delay in the rad14 Delta mutant. Thus, normal S-phase in the presence of ICLs does not seem to be due to rapid excision repair. The results also indicate that monoadduct formation by CDDP or 8-MOP at the doses used is not sufficient to delay S-phase in the rad14 Delta mutant. While the sensitivity of a rev3 Delta mutant indicates Pol zeta is needed for optimal ICL repair, isogenic cells deficient in Pol eta (rad30 Delta cells) were not significantly more sensitive to ICL agents than wild-type cells, and have no S-phase delay.  相似文献   

9.
Translesion synthesis (TLS) provides a mechanism of copying damaged templates during DNA replication. This potentially mutagenic process may operate either at the replication fork or at post-replicative gaps. We used the example of T-T cyclobutane pyrimidine dimer (CPD) bypass to determine the influence of polymerase recruitment via PCNA ubiquitylation versus the REV1 protein on the efficiency and mutagenic outcome of TLS. Using mutant chicken DT40 cell lines we show that, on this numerically most important UV lesion, defects in polymerase η or in PCNA ubiquitylation similarly result in the long-term failure of lesion bypass with persistent strand gaps opposite the lesion, and the elevation of mutations amongst successful TLS events. Our data suggest that PCNA ubiquitylation promotes CPD bypass mainly by recruiting polymerase η, resulting in the majority of CPD lesions bypassed in an error-free manner. In contrast, we find that polymerase ζ is responsible for the majority of CPD-dependent mutations, but has no essential function in the completion of bypass. These findings point to a hierarchy of access of the different TLS polymerases to the lesion, suggesting a temporal order of their recruitment. The similarity of REV1 and REV3 mutant phenotypes confirms that the involvement of polymerase ζ in TLS is largely determined by its recruitment to DNA by REV1. Our data demonstrate the influence of the TLS polymerase recruitment mechanism on the success and accuracy of bypass.  相似文献   

10.
Zhang N  Liu X  Li L  Legerski R 《DNA Repair》2007,6(11):1670-1678
DNA interstrand cross-linking agents have been widely used in chemotherapeutic treatment of cancer. The majority of interstrand cross-links (ICLs) in mammalian cells are removed via a complex process that involves the formation of double-strand breaks at replication forks, incision of the ICL, and subsequent error-free repair by homologous recombination. How double-strand breaks effect the removal of ICLs and the downstream homologous recombination process is not clear. Here, we describe a plasmid-based recombination assay in which one copy of the CFP gene is inactivated by a site-specific psoralen ICL and can be repaired by gene conversion with a mutated homologous donor sequence. We found that the homology-dependent recombination (HDR) is inhibited by the ICL. However, when we introduced a double-strand break adjacent to the site of the ICL, the removal of the ICL was enhanced and the substrate was funneled into a HDR repair pathway. This process was not dependent on the nucleotide excision repair pathway, but did require the ERCC1-XPF endonuclease and REV3. In addition, both the Fanconi anemia pathway and the mismatch repair protein MSH2 were required for the recombinational repair processing of the ICL. These results suggest that the juxtaposition of an ICL and a DSB stimulates repair of ICLs through a process requiring components of mismatch repair, ERCC1-XPF, REV3, Fanconi anemia proteins, and homologous recombination repair factors.  相似文献   

11.
Zietlow L  Bessho T 《Biochemistry》2008,47(19):5460-5464
DNA interstrand cross-links (ICLs) are mainly repaired by the combined action of nucleotide excision repair and homologous recombination in E. coli. Genetic data also suggest the existence of a nucleotide excision repair-dependent, homologous recombination-independent ICL repair pathway. The involvement of translesion synthesis in this pathway has been postulated; however, the molecular mechanism of this pathway is not understood. To examine the role of translesion synthesis in ICL repair, we generated a defined substrate with a single psoralen ICL that mimics a postincision structure generated by nucleotide excision repair. We demonstrated that the Klenow fragment (DNA polymerase I) performs translesion synthesis on this model substrate. This in vitro translesion synthesis assay will help in understanding the basic mechanism of a postincision translesion synthesis process in ICL repair.  相似文献   

12.
DNA damage tolerance pathways facilitate the bypass of DNA lesions encountered during replication. These pathways can be mechanistically divided into recombinational damage avoidance and translesion synthesis, in which the lesion is directly bypassed by specialised DNA polymerases. We have recently shown distinct genetic dependencies for lesion bypass at and behind the replication fork in the avian cell line DT40, bypass at the fork requiring REV1 and bypass at post-replicative gaps requiring PCNA ubiquitination by RAD18. The WRN helicase/exonuclease, which is mutated in the progeroid and cancer predisposition disorder Werner's Syndrome, has previously been implicated in a RAD18-dependent DNA damage tolerance pathway. However, WRN has also been shown to be required to maintain normal replication fork progression on a damaged DNA template, a defect reminiscent of REV1-deficient cells. Here we use the avian cell line DT40 to demonstrate that WRN assists REV1-dependent translesion synthesis at the replication fork and that PCNA ubiquitination-dependent post-replicative lesion bypass provides an important backup mechanism for damage tolerance in the absence of WRN protein.  相似文献   

13.
Sakai W  Wada Y  Naoi Y  Ishii C  Inoue H 《DNA Repair》2003,2(3):337-346
In a previous paper, we reported that the Neurospora crassa upr-1 gene is a homolog of the yeast gene REV3, which encodes the catalytic subunit of DNA polymerase zeta (polzeta). Characterization of the upr-1 mutant indicated that the UPR1 protein plays a role in DNA repair and mutagenesis. To help understand the mechanisms of mutagenic DNA repair in the N. crassa more extensively, we identified N. crassa homologs of yeast REV1 and REV7 and obtained mutants ncrev1 or ncrev7, which had similar phenotypes to the upr-1 mutant. Mutant carrying ncrev7 was more sensitive to UV and 4NQO, and slightly sensitive to MMS than the wild-type. The sensitivity to UV and MMS of the ncrev1 mutant was moderately higher than that of the wild-type, but the sensitivity to 4NQO of the mutant was similar to that of the wild-type. In reversion assay using testers with base substitution or frameshift mutation at the ad-3A locus, each of ncrev1 and ncrev7 mutants showed lower induced-mutability than the wild-type. Expression of ncrev1 and ncrev7 was found to be UV-inducible like the case of upr-1. Genetic analyses showed that the ncrev7 was identical to mus-26, which belongs to the upr-1 epistasis group, and that the ncrev1 was a newly identified DNA repair gene and designated as mus-42. Interestingly, all three mutants have a normal CPD photolyase gene, however, they showed a partial photoreactivation defect (PPD) phenotype, not completely defective but inefficient in photoreactivation. These results suggest that N. crassa REV homolog genes function in DNA repair and UV mutagenesis through the bypass of (6-4) photoproducts.  相似文献   

14.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

15.
Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.  相似文献   

16.
The REV3 gene of budding yeast encodes the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. While REV3-null yeast mutants are viable and exhibit normal growth, Rev3-deficient mice die around midgestation of embryogenesis, which is accompanied by massive apoptosis of cells within the embryo proper. We have investigated whether REV3 is required for the survival of mouse cells and whether the embryonic lethality caused by REV3 deficiency can be rescued by introduction of a Rev3 transgene or by inactivation of p53, the cellular gatekeeper that regulates DNA damage-induced apoptosis. We show that Rev3(-/-) blastocysts were unable to survive and grow in culture but expression of a Rev3 transgene restored their outgrowth. Moreover, Rev3 transgene expression suppressed the apoptosis in E7.5 Rev3(-/-) embryos. The Rev3(-/-) embryonic lethality, however, was not rescued by either Rev3 transgene expression or p53 deficiency. These results reveal an essential role for REV3 in the survival and growth of mammalian cells and suggest that Rev3(-/-) embryonic death occurs in a p53-independent pathway.  相似文献   

17.
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.  相似文献   

18.
Exposure to ultraviolet light induces a number of forms of damage in DNA, of which (6–4) photoproducts present the most formidable challenge to DNA replication. No single DNA polymerase has been shown to bypass these lesions efficiently in vitro suggesting that the coordinate use of a number of different enzymes is required in vivo. To further understand the mechanisms and control of lesion bypass in vivo, we have devised a plasmid-based system to study the replication of site-specific T–T(6–4) photoproducts in chicken DT40 cells. We show that DNA polymerase ζ is absolutely required for translesion synthesis (TLS) of this lesion, while loss of DNA polymerase η has no detectable effect. We also show that either the polymerase-binding domain of REV1 or ubiquitinated PCNA is required for the recruitment of Polζ as the catalytic TLS polymerase. Finally, we demonstrate a previously unappreciated role for REV1 in ensuring bypass synthesis remains in frame with the template. Our data therefore suggest that REV1 not only helps to coordinate the delivery of DNA polymerase ζ to a stalled primer terminus but also restrains its activity to ensure that nucleotides are incorporated in register with the template strand.  相似文献   

19.
The repair of DNA interstrand cross-links (ICLs) remains largely ill-defined in higher eukaryotic cells. Previously, we have developed assays that can be used to monitor the early stages of processing of ICLs in vitro. Here, we have used P11 phosphocellulose chromatography to fractionate HeLa nuclear extracts and have subsequently reconstituted these assays with the resulting fractions. RPA and PCNA were found in a single fraction, and were the only factors in this fraction required for the reconstitution of these assays. The roles of RPA and PCNA in the formation of incisions at ICLs and in the subsequent DNA synthesis step were assessed. RPA was found to be essential for both stages of ICL processing indicating that it is required for lesion recognition and/or for the subsequent endonucleolytic processing. PCNA is required for the DNA synthesis stage and although it is not critical for the incision stage of the reaction it does enhance this step presumably by a stimulation of lesion recognition by MutSbeta. These findings define novel roles for RPA and PCNA in the processing of ICLs in mammalian cells.  相似文献   

20.
黄敏  杨业然  孙晓艳  张婷  郭彩霞 《遗传》2018,40(11):1007-1014
REV1是跨损伤聚合酶Y家族的重要成员之一,它不仅作为支架蛋白介导Y家族聚合酶招募至损伤位点完成跨损伤DNA合成(translesion DNA synthesis, TLS),还可利用自身的dCMP转移酶活性在一些损伤位点对侧整合dCMP参与TLS。此外,REV1也被报导参与调控同源重组修复。为进一步探讨REV1互作蛋白RAD51和RAD51C在其参与的同源重组修复通路中的调控作用,本研究采用脉冲氮激光微辐射实验,发现RAD51可调控REV1到双链断裂位点的募集。同时,免疫荧光实验结果证明REV1也反过来影响RAD51应答CPT损伤。然而敲低RAD51C并不影响REV1到DNA双链断裂位点的招募。结果表明,REV1和RAD51在HR通路中存在彼此相互调控的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号