首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Primary imprinting during gametogenesis governs the monoallelic expression/repression of imprinted genes in embryogenesis. Previously, we showed that maternal primary imprinting is disrupted in neonate-derived non-growing oocytes. Here, to investigate precisely when and in what order maternal primary imprinting progresses, we produced parthenogenetic embryos containing one genome from a non-growing or growth-stage oocyte from 1- to 20-day-old mice and one from a fully grown oocyte of adult mice. We used these embryos to analyze the expression of eight imprinted genes: Peg1/Mest, Peg3, Snrpn, Znf127, Ndn, Impact, Igf2r, and p57(KIP2). The results showed that the imprinting signals for each gene were not all imposed together at a specific time during oocyte growth but rather occurred throughout the period from primary to antral follicle stage oocytes. The developmental ability of the constructed parthenogenetic embryos was gradually reduced as the nuclear donor oocytes grew. These studies provide the first insight into the process of primary imprinting during oocyte growth.  相似文献   

4.
Imprinted maternal-allele-specific expression of the mouse insulin-like growth-factor type 2 receptor (Igf2r) gene depends on a 3.7-kb element named region 2, located in the second intron of the gene. Region 2 carries a maternal-allele-specific methylation imprint and contains an imprinted CpG island promoter (Air) that expresses a noncoding antisense RNA from the paternal inherited allele only. Here, we use transgenes to test the minimal requirements for imprinting of Air and to test if the action of region 2 is restricted to Igf2r. Transgenes up to 9 kb with Air as a single promoter are expressed but not imprinted. When coupled to the Igf2r CpG island promoter on a 44-kb transgene, Air was imprinted in one of three lines. However, Air on a 4.6-kb fragment is also imprinted in 2 of 14 lines when inserted in an intron of an adenine phosphoribosyltransferase (Aprt) transgene, and in one line, the imprinted methylation and expression of Air have been transferred onto the Aprt CpG island promoter. These data suggest that a dual CpG island promoter setting may facilitate Air imprinting as a short transgene and also show that Air can transfer imprinting onto other genes. However, for reliable Air imprinting, elements are necessary that are located outside a 44-kb region spanning the Air-Igf2r promoters.  相似文献   

5.
In the mouse the insulin-like growth factor receptor type 2 gene (Igf2r) is imprinted and maternally expressed. Igf2r encodes a trans-membrane receptor that transports mannose-6-phosphate tagged proteins and insulin-like growth factor 2 to lysosomes. During development the receptor reduces the amount of insulin-like growth factors and thereby decreases embryonic growth. The dosage of the gene is tightly regulated by genomic imprinting, leaving only the maternal copy of the gene active. Although the function of Igf2r in development is well established, the function of imprinting the gene remains elusive. Gene targeting experiments in mouse have demonstrated that the majority of genes are not sensitive to gene dosage, and mice heterozygous for mutations generally lack phenotypic alterations. To investigate whether reduction of Igf2r gene dosage by genomic imprinting has functional consequences for development we generated a non-imprinted allele (R2Delta). We restored biallelic expression to Igf2r by deleting a critical element for repression of the paternal allele (region 2) in mouse embryonic stem cells. Maternal inheritance of the R2Delta allele has no phenotype; however, paternal inheritance results in biallelic expression of Igf2r, which causes a 20% reduction in weight late in embryonic development that persists into adulthood. Paternal inheritance of the R2Delta allele rescues the lethality of a maternally inherited Igf2r null allele and a maternally inherited Tme (T-associated maternal effect) mutation. These data show that the biological function of imprinting Igf2r is to increase birth weight and they also establish Igf2r as the Tme gene.  相似文献   

6.
Parental genomes have reciprocal phenotypic effects during development in the mouse because they are programmed (imprinted) with germ line-specific epigenetic modifications. These epigenetic modifications are inherited after fertilisation and they determine whether the maternal or the paternal allele of an 'imprinted' gene is expressed. Four such imprinted genes have so far been identified; the paternal genes of Igf2, and Snrpn, and the maternal genes of Igf2r and H19 are preferentially expressed during development. Igf2 and H19 are closely linked on chromosome 7 and show remarkably similar temporal and spatial patterns of expression. A mechanistic, and possibly a functional link may exist in the reciprocal imprinting of H19 and Igf2. The paternal H19 gene is apparently repressed by DNA methylation in the promoter region. This modification is not inherited from sperm but introduced after fertilisation. The nature of the primary germ line imprint therefore remains to be determined.  相似文献   

7.
The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by trans-acting mechanisms.  相似文献   

8.
Disruption of imprinted X inactivation by parent-of-origin effects at Tsix   总被引:11,自引:0,他引:11  
Lee JT 《Cell》2000,103(1):17-27
In marsupials and in extraembryonic tissues of placental mammals, X inactivation is imprinted to occur on the paternal chromosome. Here, we find that imprinting is controlled by the antisense Xist gene, Tsix. Tsix is maternally expressed and mice carrying a Tsix deletion show normal paternal but impaired maternal transmission. Maternal inheritance occurs infrequently, with surviving progeny showing intrauterine growth retardation and reduced fertility. Transmission ratio distortion results from disrupted imprinting and postimplantation loss of mutant embryos. In contrast to effects in embryonic stem cells, deleting Tsix causes ectopic X inactivation in early male embryos and inactivation of both X chromosomes in female embryos, indicating that X chromosome counting cannot override Tsix imprinting. These results highlight differences between imprinted and random X inactivation but show that Tsix regulates both. We propose that an imprinting center lies within Tsix.  相似文献   

9.
10.
Lsh controls silencing of the imprinted Cdkn1c gene   总被引:2,自引:0,他引:2  
Epigenetic regulation, such as DNA methylation plays an important role in the control of imprinting. Lsh, a member of the SNF2 family of chromatin remodeling proteins, controls DNA methylation in mice. To investigate whether Lsh affects imprinting, we examined CpG methylation and allelic expression of individual genes in Lsh-deficient embryos. We report here that loss of Lsh specifically alters expression of the Cdkn1c gene (also known as p57(Kip2)) but does not interfere with maintenance of imprints at the H19, Igf2, Igf2r, Zac1 and Meg9 genes. The reactivation of the silenced paternal Cdkn1c allele correlates closely with a loss of CpG methylation at the 5' DMR at the Cdkn1c promoter, whereas KvDMR1 and DMRs of other imprinted genes were not significantly changed. Chromatin immunoprecipitations demonstrate a direct association of Lsh with the 5' DMR at the Cdkn1c promoter, but not with Kv DMR1 or other imprinted loci. These data suggest that methylation of the 5' DMR plays an important role in the imprinting of the Cdkn1c gene. Furthermore, it suggests that Lsh is not required for maintenance of imprinting marks in general, but is only crucial for imprinting at distinct genomic sites.  相似文献   

11.
Every diploid organism inherits a complete chromosome set from its father and mother in addition to the sex chromosomes, so that all autosomal genes are available in two copies. For most genes, both copies are expressed without preference. Imprinted genes, however, are expressed depending on their parental origin, being active on the paternal or maternal allele only. To date 73 imprinted genes are known in mouse (www.mgu.har.mrc.ac.uk/research/imprinting), 37 show paternal expression while 36 show maternal expression, indicating no bias for imprinting to occur in one sex or the other. Therefore, two different parental-specific imprinting systems may have evolved in mammals, acting specifically in the paternal or maternal gamete. Similarities and differences between the two imprinting systems will be reviewed, with specific reference to the role of non-coding RNAs and chromatin modifications. The mouse Igf2r/Air cluster is presented as a model of the maternal imprinting system.  相似文献   

12.
For most imprinted genes, a difference in expression between the maternal and paternal alleles is associated with a corresponding difference in DNA methylation that is localized to a differentially methylated domain (DMD). Removal of a gene's DMD leads to a loss of imprinting. These observations suggest that DMDs have a determinative role in genomic imprinting. To examine this possibility, we introduced sequences from the DMDs of the imprinted Igf2r, H19, and Snrpn genes into a nonimprinted derivative of the normally imprinted RSVIgmyc transgene, created by excising its own DMD. Hybrid transgenes with sequences from the Igf2r DMD2 were consistently imprinted, with the maternal allele being more methylated than the paternal allele. Only the repeated sequences within DMD2 were required for imprinting these transgenes. Hybrid transgenes containing H19 and Snrpn DMD sequences and ones containing sequences from the long terminal repeat of a murine intracisternal A particle retrotransposon were not imprinted. The Igf2r hybrid transgenes are comprised entirely of mouse genomic DNA and behave as endogenous imprinted genes in inbred wild-type and mutant mouse strains. These types of hybrid transgenes can be used to elucidate the functions of DMD sequences in genomic imprinting.  相似文献   

13.
14.
15.
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.  相似文献   

16.
Interactions between imprinting effects in the mouse   总被引:3,自引:0,他引:3  
Cattanach BM  Beechey CV  Peters J 《Genetics》2004,168(1):397-413
Mice with uniparental partial or complete disomies for any one of 11 identified chromosomes show abnormal phenotypes. The abnormalities, or imprinting effects, can be attributable to an incorrect dosage of maternal or paternal copies of imprinted gene(s) located within the regions involved. Here we show that combinations of partial disomies may result in interactions between imprinting effects that seemingly independently affect fetal and/or placental growth in different ways or modify neonatal and postnatal imprinting effects. Candidate genes within the regions have been identified. The findings are generally in accord with the "conflict hypothesis" for the evolution of genomic imprinting but do not clearly demonstrate common growth axes within which imprinted genes may interact. Instead, it would seem that any gene that represses or limits embryonic/fetal growth to the advantage of the mother--by any developmental means--will have been subject to evolutionary selection for paternal allele repression. Likewise, any gene that favors embryonic/fetal development at consequent cost to the mother--by any developmental means--will have faced selection for maternal allele repression. The classical Igf2-Igf2r axis may therefore be unique. The findings involve reinterpretation of older imprinting data and consequently revision of the mouse imprinting map.  相似文献   

17.
A small sub-set of mammalian genes are subject to regulation by genomic imprinting such that only one parental allele is active in at least some sites of expression. Imprinted genes have diverse functions, notably including the regulation of growth. Much attention has been devoted to the insulin-like growth factor signalling pathway that has a major influence on fetal size and contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the paternal allele) and Igf2r (a growth inhibitory factor expressed from the maternal allele). These genes fit the parent-offspring conflict hypothesis for the evolution of genomic imprinting. Accumulated evidence indicates that at least one other fetal growth pathway exists that has also fallen under the influence of imprinting. It is clear that not all components of growth regulatory pathways are encoded by imprinted genes and instead it may be that within a pathway the influence of a single gene by each of the parental genomes may be sufficient for parent-offspring conflict to be enacted. A number of imprinted genes have been found to influence energy homeostasis and some, including Igf2 and Grb10, may coordinate growth with glucose-regulated metabolism. Since perturbation of fetal growth can be correlated with metabolic disorders in adulthood these imprinted genes are considered as candidates for involvement in this phenomenon of fetal programming.  相似文献   

18.
19.
Maternal inheritance of targeted loss of function alleles encoding either the cyclin-dependent kinase inhibitor 1C (Cdkn1c) or the insulin-like growth factor 2 receptor (Igf2r) leads to fully penetrant perinatal lethality in C57BL/6J mice due to genomic imprinting. Here, we demonstrate that there is a marked enhancement in postnatal viability of F(1) mice carrying either the ablated Igf2r ( approximately 32%) or Cdkn1c ( approximately 83%) when the paternal genome was derived from the inbred Mus musculus musculus CzechII/Ei strain. Genetic and molecular analyses indicated that the increased viability was not caused by relaxation of imprinted gene expression, but is the consequence of unidentified polygenic modifiers that are not imprinted. In the course of this study, restriction-site polymorphisms between 129S1 and CzechII/Ei in 21 imprinted and 14 biallelically expressed genes were identified. These polymorphisms may prove useful in determining the effects of different mutant backgrounds on genomic imprinting.  相似文献   

20.
The H19 gene is imprinted with preferential expression from the maternal allele. The putative imprinting control region for this locus is hypermethylated on the repressed paternal allele. Although maternal-specific expression of H19 is observed in mouse blastocysts that develop in vivo, biallelic expression has been documented in embryos and embryonic stem cells experimentally manipulated by in vitro culture conditions. In this study the effect of culture on imprinted H19 expression and methylation was determined. After culture of 2-cell embryos to the blastocyst stage in Whitten's medium, the normally silent paternal H19 allele was aberrantly expressed, whereas little paternal expression was observed following culture in KSOM containing amino acids (KSOM+AA). Analysis of the methylation status of a CpG dinucleotide located in the upstream imprinting control region revealed a loss in methylation in embryos cultured in Whitten's medium but not in embryos cultured in KSOM+AA. Thus, H19 expression and methylation were adversely affected by culture in Whitten's medium, while the response of H19 to culture in KSOM+AA approximated more closely the in vivo situation. It is unlikely that biallelic expression of H19 following culture in Whitten's medium is a generalized effect of lower methylation levels, since the amount of DNA methyltransferase activity and the spatial distribution of Dnmt1 protein were similar in in vivo-derived and cultured embryos. Moreover, imprinted expression of Snrpn was maintained following culture in either medium, indicating that not all imprinted genes are under the same stringent imprinting controls. The finding that culture conditions can dramatically, but selectively, affect the expression of imprinted genes provides a model system for further study of the linkage between DNA methylation and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号