首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of long-term (1983–1988) applications of crop residues (millet straw, 2–4 t ha-1 yr–1) and/or mineral fertilizer (30 kg N, 13 kg P and 25 kg K ha-1 yr-1) on uptake of phosphorus (P) and other nutrients, root growth and mycorrhizal colonization of pearl millet (Pennisetum glaucum L.) was examined for two seasons (1987 and 1988) on an acid sandy soil in Niger. Treatments of the long-term field experiment were: control (–CR–F), mineral fertilizer only (–CR+F), crop residues only (+CR–F), and crop residues plus mineral fertilizer (+CR+F).In both years, total P uptake was similar for +CR–F and –CR+F treatments (1.6–3.5 kg P ha-1), although available soil P concentration (Bray I P) was considerably lower in +CR–F (3.2 mg P kg-1 soil) than in –CR+F (7.4) soil. In the treatments with mineral fertilizers (–CR+F; +CR+F), crop residues increased available soil P concentrations (Bray I P) from 7.4 to 8.9 mg kg-1 soil, while total P uptake increased from 3.6 to 10.6 kg P ha-1. In 1987 (with 450 mm of rainfall), leaf P concentrations of 30-day-old millet plants were in the deficiency range, but highest in the +CR+F treatment. In 1988 (699 mm), leaf P concentrations were distinctly higher, and again highest in the +CR+F treatment. In the treatments without crop residues (–CR–F; –CR+F), potassium (K) concentrations in the leaves indicated K deficiency, while application of crop residues (+CR–F; +CR+F) substantially raised leaf K concentrations and total K uptake. Leaf concentrations of calcium (Ca) and magnesium (Mg) were hardly affected by the different treatments.In the topsoil (0–30 cm), root length density of millet plants was greater for +CR+F (6.5 cm cm-3) than for +CR–F (4.5 cm cm-3) and –CR+F (4.2 cm cm-3) treatments. Below 30 cm soil depth, root length density of all treatments declined rapidly from about 0.6 cm cm-3 (30–60 cm soil depth) to 0.2 cm cm-3 (120–180 cm soil depth). During the period of high uptake rates of P (42–80 DAP), root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi was low in 1987 (15–20%), but distinctly higher in 1988 (55–60%). Higher P uptake of +CR+F plants was related to a greater total root length in 0–30 cm and also to a higher P uptake rate per unit root length (P influx). Beneficial effects of crop residues on P uptake were primarily attributed to higher P mobility in the soil due to decreased concentrations of exchangeable Al, and enhancement of root growth. In contrast, the beneficial effect of crop residues on K uptake was caused by direct K supply with the millet straw.  相似文献   

2.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

3.
The impact of sustained low external concentrations of NO 3 (0, 10, 100 and 1000 mmol m–3) on plant growth and the relative acquisition of N through N2 fixation and NO 3 uptake by established, nodulated white clover (Trifolium repens L. cv. Blanca) was studied over 28 days in flowing solution culture. Nitrogen fixation was measured by N difference and 15N dilution methods. Plants supplied with NO 3 achieved higher relative growth rates (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\]=0.091 d–1) compared with control plants dependent on N2 fixation (0.073 d–1). Nitrate plants showed progressive increases in shoot: root d.w. ratios from 4 to 6.5–7.6 between days 0–28, compared with 5.1 on day 28 for control plants. Increases in both nodule d.w. and numbers per plant were inhibited after day seven at all concentrations of NO 3 . The severity of inhibition of N2 fixation increased with increasing NO 3 concentration and with time. The total amounts of N2 fixed per plant between days 0–7 after supplying 10, 100 and 1000 mmol m–3 NO 3 , respectively, were 37–39, 28–30 and 0–13%, of the total N acquired. Between days 7–28 the proportional contributions of N2 fixation to total N acquisition declined to 3, 0.5 and 0%, respectively, in these treatments. The corresponding mean specific rates of N2 fixation between days 0–7 were, respectively, 5.4, 3.2, and 2.0 mmol N d–1 g–1 nodule d.w., compared with 7.9 mmol N d–1 g–1 nodule d.w. for zero NO 3 plants. There was no evidence of a transitory increase in N2 fixation following the addition of NO 3 , even at the lowest supply concentration.  相似文献   

4.
Boller  B. C.  Nösberger  J. 《Plant and Soil》1988,112(2):167-175
The temporal N-uptake patterns of white clover (Trifolium repens L.) mixed with perennial ryegrass (Lolium perenne L.) and of red clover (Trifolium pratense L.) mixed with Italian ryegrass (Lolium multiflorum Lam.) were determined in successive harvests of herbage within the growth cycles of a ley established near Zürich (Switzerland). Rooting patterns were examined by injecting15N-fertilizer at soil depths ranging from 10 to 40 cm. The results were analyzed to determine the effect of variations in time and depth of N-uptake on the15N-based measurement of N from symbiosis (Nsym) and N from transfer (Ntrans).Grasses in mixture appeared to have deeper rooting systems than grass monocultures, which led to an overestimation of N transfer from white clover to perennial ryegrass if15N was spread on the soil surface.White clover generally lagged behind grass in soil N- uptake. Soil N-uptake of red clover slowed down before that of the grass because % Nsym almost reached 100% during the second half of each growth cycle. However, the effect of these dissimilarities on the seasonal average of %Nsym did not exceed 2%.It is concluded that at the observed high levels of N2 fixation, failure to account for the N-uptake patterns of the test and reference crops only slightly affected the estimates of % Nsym and % Ntrans, and did not invalidate the observed differences between species.  相似文献   

5.
Rapid abiotic transformation of nitrate in an acid forest soil   总被引:10,自引:4,他引:10  
Nitrate immobilization into organic matter isthought to require catalysis by the enzymes ofsoil microorganisms. However, recent studiessuggest that nitrate added to soil isimmobilized rapidly and this process mayinclude abiotic pathways. We amended living andsterilized soil with 15N-labeled nitrateand nitrite to investigate biotic and abioticimmobilization. We report rapid transformationof nitrate in incubations of the O layer offorest soils that have been sterilized toprevent microbial activity and to denaturemicrobial enzymes. Approximately 30, 40, and60% of the 15N-labeled nitrate added tolive, irradiated, or autoclaved organic horizonsoil disappeared from the extractableinorganic-N pool in less than 15 minutes. About5% or less of the nitrate was recovered asinsoluble organic N in live and sterilizedsoil, and the remainder was determined to besoluble organic N. Added 15N-nitrite,however, was either lost to gaseous N orincorporated into an insoluble organic N formin both live and sterile organic soils. Hence,the fate and pathway of apparent abioticnitrate immobilization differs from thebetter-known mechanisms of nitrite reactionswith soil organic matter. Nitrate and nitriteadded to live A-horizon soil was largelyrecovered in the form added, suggesting thatrapid conversion of nitrate to solubleorganic-N may be limited to C-rich organichorizons. The processes by which this temperateforest soil transforms added nitrate to solubleorganic-N cannot be explained by establishedmechanisms, but appears to be due to abioticprocesses in the organic horizon.  相似文献   

6.
The influence of soil nitrate availability, crop growth rate and phenology on the activity of symbiotic nitrogen fixation (SNF) during the growth cycle of pea (Pisum sativum cv. Baccara) was investigated in the field under adequate water availability, applying various levels of fertiliser N at the time of sowing. Nitrate availability in the ploughed layer of the soil was shown to inhibit both SNF initiation and activity. Contribution of SNF to total nitrogen uptake (%Ndfa) over the growth cycle could be predicted as a linear function of mineral N content of the ploughed layer at sowing. Nitrate inhibition of SNF was absolute when mineral N at sowing was over 380 kg N ha–1. Symbiotic nitrogen fixation was not initiated unless nitrate availability in the soil dropped below 56 kg N ha–1. However, SNF could no longer be initiated after the beginning of seed filling (BSF). Other linear relationships were established between instantaneous %Ndfa and instantaneous nitrate availability in the ploughed layer of the soil until BSF. Instantaneous %Ndfa decreased linearly with soil nitrate availability and was nil above 48 and 34 kg N ha–1 for the vegetative and reproductive stages, respectively, levels after which no SNF occurred. Moreover, SNF rate was shown to be closely related to the crop growth rate until BSF. The ratio of SNF rate over crop growth rate decreased linearly with thermal time. Maximum SNF rate was about 40 mg N m–2 degree-day–1, equivalent to 7 kg N ha–1, regardless of the N treatment. From BSF to the end of the growth cycle, the high N requirements of the crop were supported by both SNF and nitrate root absorption but, of the two sources, nitrate root absorption seemed to be less affected by the presence of reproductive organs. However, since soil nitrate availability was low at the end of the growth cycle, SNF was the main source of nitrogen acquisition. The onset of SNF decrease at the end of the growth cycle seemed to be first due to nodule age and then associated to the slowing of the crop growth rate.  相似文献   

7.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

8.
P. J. Goodman 《Plant and Soil》1988,112(2):247-254
The stable isotope15N is particularly valuable in the field for measuring N fixation by isotope dilution. At the same time other soil-plant processes can be studied, including15N recovery, and nitrogen transfer between clover and grass. Three contrasting sites and soils were used in the present work: a lowland soil, an upland soil, and an upland peat. Nitrogen fixation varied from 12 gm–2 on lowland soil to 2.7 gm–2 on upland peat. Most N transfer occurred on upland soil (4.2 gm–2) which, added to nitrogen fixed, made a total of 8.7 gm2 input during summer 1985.15N recovery for the whole experiment was small, around 25%.Measurement of dead and dying leaves, stubble and roots, suggests that plant organ death is the first stage in N transfer from white clover to ryegrass, through the decomposer cycle. Decomposition was fastest on lowland soils, slowest on peat. On lowland soil this decomposer nitrogen is apparently subverted before transfer, probably by soil microbes.Variations in natural abundance of15N in plants were found in the two species on the different soils. These might be used to measure nitrogen fixation without adding isotope, but the need for many replicates and repeat samples would limit throughput.  相似文献   

9.
A 12-week greenhouse experiment was conducted to determine the effect of the polyphenol, lignin and N contents of six legumes on their N mineralization rate in soil and to compare estimates of legume-N release by the difference and 15N-recovery methods. Mature tops of alfalfa (Medicago sativa L.), round leaf cassia (Cassia rotundifolia Pers., var. Wynn), leucaena (Leucaena leucocephala Lam., deWit), Fitzroy stylo (Stylosanthes scabra Vog., var Fitzroy), snail medic (Medicago scutellata L.), and vigna (Vigna trilobata L., var verde) were incorporated in soil at the rate of 100 mg legume N kg-1 soil. The medic and vigna were labeled with 15N. Sorghum-sudan hybrid (Sorghum bicolor, L. Moench) was used as the test crop. A non-amended treatment was used as a control. Net N mineralization after 12 weeks ranged from 11% of added N with cassia to 47% of added N for alfalfa. With the two legumes that contained less than 20 g kg-1 of N, stylo and cassia, there was net N immobilization for the first 6 weeks of the experiment. The legume (lignin + polyphenol):N ratio was significantly correlated with N mineralization at all sampling dates at the 0.05 level and at the 0.01 level at 6 weeks (r2=0.866). Legume N, lignin, or polyphenol concentrations or the lignin:N ratio were not significantly correlated with N mineralization at any time. The polyphenol:N ratio was only significantly correlated with N mineralization after 9 weeks (r2=0.692). The (lignin + polyphenol):N ratio appears to be a good predictor of N mineralization rates of incorporated legumes, but the method for analyzing plant polyphenol needs to be standardized. Estimates of legume-N mineralization by the difference and 15N recovery methods were significantly different at all sampling dates for both 15N-labeled legumes. After 12 weeks, estimates of legume-N mineralization averaged 20% more with the difference method than with the 15N recovery method. This finding suggests that estimates of legume N available to subsequent crops should not be based solely on results from 15N recovery experiments.  相似文献   

10.
Clonal plants of white clover (Trifolium repens L.) were grown in a controlled environment with either low or high rates of applied nitrate-N (providing, notionally, insufficient or sufficient N for unrestricted growth), or in the absence of applied N. Plants receiving no nitrate-N were inoculated with Rhizobia and fixed their own N2. All plants were maintained with a maximum of three fully unfolded leaves per apex (lenient defoliation) until day 68 when half of the plants were severely defoliated. The export and translocation of carbohydrates from the first fully unfolded main stolon leaf was measured three days later using 14C.Reduced carbon translocation to stolon tissue and roots, and increased translocation to young branches, occurred following severe defoliation in all three nitrogen treatments. However, N-deficient plants showed large reductions in total export of carbohydrates (44 vs. 17% of 14C assimilated for lenient vs. severe defoliation) whereas N-sufficient plants (either receiving nitrate-N or fixing their own N2) showed small increases in total export (means of 54% vs. 62% in the respective defoliation treatments). Furthermore, carbohydrate translocation to old branches ceased altogether in severely defoliated, N-deficient plants, but increased in severely defoliated, N-sufficient plants, illustrating that plant responses to multiple-factor stresses may differ greatly from those seen as the result of single-factor stresses. Interactions between nitrogen nutrition and defoliation in total carbohydrate export, and in carbohydrate supply to old branches, could have serious negative effects on the short-term C economy and physiological integration, and hence on the adaptability, of clonal plants growing with a mineral deficiency in the presence of grazing animals.  相似文献   

11.
The apparent transfer of N from clover to associated grass was evaluated over a four year period both on the basis of harvested herbage and by taking account of changes in N in stubble and root (to 10 cm depth) in swards with perennial ryegrass and three different white clover cultivars differing in leaf size. The large leaved Aran transferred 15% of its nitrogen while Huia transferred 24% and the small leaved Kent Wild White transferred 34%. When changes in stubble and root N were taken into account the percentage of N transferred was calculated to be 5% less than in harvested herbage only, as the small leaved types had proportionately more N in the roots and stolons, but the large leaved type was probably more competitive towards the grass.Loss of N from clover roots from July to October was compared to that from grass roots in a grass/white clover sward continuously stocked with steers using a method which incorporated tissue turnover and 15N dilution techniques. Less than 1 mg N m-2 d-1 was lost from the grass roots. In contrast 8 mg m-2 d-1 were estimated to be lost from clover roots while 12 mg N m-2 d-1 were assimilated.It is concluded that clover cultivar and competitive ability on grass have to be taken into account together with the relationship between N turnover in roots and N available for grass growth when modelling N transfer in grass/clover associations.  相似文献   

12.
Two divergent populations of T. repens cv. Haifa developed from two generations of recurrent selection for shoot chloride concentration, were grown in the greenhouse at 0 and 40 mol m–3 NaCl. Over two harvest cycles at 40 mol m–3 NaCl, the population selected for a low concentration of chloride in the shoot maintained a significantly lower chloride and sodium concentration compared with those plants selected for a high shoot chloride concentration. The distribution of chloride in the shoots was further examined in a subsample of plants from both populations. In all plants, concentrations of chloride were lower in the expanding and fully expanded leaves than in the older leaf tissue or petioles.While there were no significant differences in the photosynthetic rates between lines, shoot yields and relative leaf expansion rates were higher in the low chloride population. Plant death was greater in plants selected for high shoot chloride. These results suggest that selections based on measurements of low shoot chloride concentrations may be successful in developing a cultivar of T. repens with improved salt tolerance.  相似文献   

13.
J. R. Caradus 《Plant and Soil》1992,146(1-2):209-217
Ninety eight white clover genotypes were cloned and grown in pots at two levels of phosphorus (P) supply in soil. After harvest the nitrogen (N) and P content of shoot (leaf, petiole and unrooted stolon), stolon and root tissue was determined. Broad sense heritabilities for %N, %P, and proportion of total N or P in each tissue type were calculated. Heritabilities ranged from 0.22 to 0.68. They were generally higher for %P than %N; and higher in shoot and stolon tissue than root tissue for %P, %N, and proportion of N or P. Level of P in which plants were grown had little effect on heritability values. Genotypes from bred cultivars differed from those collected from hill country pastures for plant size, and partitioning of N and P to shoot, stolon and root. Relationships between plant characters were examined to determine the consequences of selection.  相似文献   

14.
This study was conducted to examine the effects of varying N rates and cropping systems (mixedversus pure stand) on the suitability of oats (Avena sativa L.) for estimating N2 fixed in sequentially harvested vetch (Vicia sativa L.) over two growing seasons (1984–85 and 1985–86). The N rates were, 20 and 100 kg N ha–1 in 1984–85 and 15 and 60 kg N ha–1 in 1985–86. In the 1984–85 season, vetch at maturity derived 76 and 63% N from fixation at the high and low N rates respectively. The corresponding values for the second season were 66 and 42%. Except in the 1985–86 season when some significantly higher values of % N2 fixed were estimated by using the reference crop grown at the higher (A-value approach) than at the lower N rate (isotope-dilution approach), both approaches resulted in similar measurements of N2 fixed. In the 1984–85 season, similar values of N2 fixed were obtained using either the pure or mixed stand oats reference crops. Although in the 1985–86 season, the mixed reference crop occasionally estimated lower % N2 fixed than pure oats, total N2 fixed estimates were always similar (P<0.05). Thus, in general, N fertilization and cropping system of the reference crop did not significantly influence estimates of N2 fixation.  相似文献   

15.
Summary White clover (Trifolium repens L.) plants grown in pots and supplied with the same concentration x days of15N labelled nitrate, but in contrasting patterns and doses had similar N concentrations but differed in the proportions devived from N2 fixation and nitrate. N2-fixation and nodule dry weight responded rapidly (2–3 days) to changes in nitrate availability. Plants exposed frequently to small doses of nitrate took up more nitrate (and hence relied less on N2-fixation) and had greater dry weights and shoot: root ratios than those exposed to larger doses less often. In mixed ryegrass (Lolium perenne L.)/clover communities clover's ability to either successfully compete for nitrate or fix N2 gave it consistently higher N concentrations than grass whether they were given high or low nitrate nutrient. This higher N concentration was accompanied by greater dry weights than grass in the low nitrate swards but not where high levels of nitrate were applied.  相似文献   

16.
Field studies were conducted in Niger using 15N-labeled fertilizers to assess the fate and efficiency of fertilizer N in pearl millet (Pennisetum glaucum [L.] R.Br.) production. Total plant uptake of fertilizer N was low in all cases (20%–37%), and losses were severe (25%–53%). The majority of N remaining in the soil was found in the 0- to 15-cm layer though some enrichment at lower depths was found when the N fertilizer was calcium ammonium nitrate (CAN). In a comparison of urea placement methods (band, broadcast, or point placement), no significant differences in 15N uptake or yield were noted though point placement did exacerbate 15N loss. The mechanism of N loss is believed to have been ammonia volatilization. Yields were similar whether urea or CAN was used, but 15N uptake from CAN was higher. A statistical model was developed relating millet yield and N response to midseason rainfall. In drought years, no N response was found, whereas in years of good rainfall a response was found of 15 kg grain for each kilogram of N applied (at 30 kg N ha-1 rate).  相似文献   

17.
Root exudates: a pathway for short-term N transfer from clover and ryegrass   总被引:16,自引:1,他引:15  
The short-term transfer of nitrogen (N) from legumes to grasses was investigated in two laboratory studies. One study was done in pots where the roots of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were allowed to co-exist, and a second study was performed using a micro-lysimeter system designed to maintain nutrient flow from the clover to the grass, whilst removing direct contact between the root systems. The 15N-dilution technique was used to quantify the transfer of N between species. Levels of ammonia and amino acids were measured in root exudates. The amounts of N transferred were in the same order of magnitude in both the pot and micro-lysimeter experiments. In the micro-lysimeter experiment, 0.076 mg of N were transferred per plant from clover to ryegrass during the course of the experiment. Ammonium exudation was much higher than amino acid exudation. The most abundant amino acids in both clover and ryegrass root exudates were serine and glycine. However, there was no correlation between the free amino acid profile of root extracts and exudates for both plant species: Asparagine was the major amino acid in clover roots, while glutamine, glutamate and aspartate were the major amino acids in ryegrass roots. Comparison of exudates obtained from plants grown in non-sterile or axenic conditions provides evidence of plant origin of ammonium, serine and glycine.  相似文献   

18.
F. Azam 《Plant and Soil》1990,125(2):255-262
A pot experiment was conducted to study the effect of organic and inorganic nitrogen (N) sources on the yield and N uptake of rice from applied and native soil-N. The residual effect of these N sources on a succeeding wheat crop was also studied. Organic N was applied in the form of 15N-labelled Sesbania aculeata L., a legume, and inorganic N in the form of 15N-labelled ammonium sulphate. The two sources were applied to the soil separately or together at the time of transplanting rice. Recovery of N by rice from both the applied sources was quite low but both sources caused significant increases in biomass and N yield of rice. Maximum increase was recorded in soil treated with organic N. The residual value of the two materials as source of N for wheat was not significant; the wheat took up only a small fraction of the N initially applied. Loss of N occurred from both applied N sources, the losses being more from inorganic N. Both applied N sources caused a substantial increase in the availability of soil-N to rice and wheat; most of this increase was due to organic N and was attributed to the so-called ‘priming’ effect or ANI (added nitrogen interaction) of the applied material.  相似文献   

19.
Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha.The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.  相似文献   

20.
It was the aim of this study to determine the way in which low temperature modifies the effect of a competing grass on nitrogen fixation of a forage legume. White clover (Trifolium repens L.) was grown in monoculture or in different planting ratios with timothy (Phleum pratense L.) or perennial ryegress (Lolium perenne L.) in growth chambers at either 7.5/5°C (LoT) or 15/10°C (HiT) average day/night temperatures, and with 2.5 or 7.5 mM 15N-labelled nitrate in the nutrient solution.Competition with grass led to a marked increase in the proportion of clover nitrogen derived from symbiosis (% Nsym). This increase was slower at LoT where % Nsym was reduced considerably; it was closely related to the reduction in the amount of available nitrate as a result of its being utilized by the grass.Nitrogen concentration in white clover herbage and dry matter yield per clover plant were reduced, for the most part, when a competing grass was present. The amount of nitrogen fixed per plant of white clover decreased markedly with temperature. Low temperature consequently accentuated competition for nitrate. The capacity of white clover to compete successfully was limited by its slower growth and nitrogen accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号