首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The aim of the study was to evaluate the effect of habituation at different pH conditions on the acid resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium, and to identify potential differences between the adaptive responses of the three pathogens. METHODS: Stationary phase cells of L. monocytogenes, E. coli O157:H7 and S. Typhimurium, grown in glucose-free media, were exposed to pH 3.5 broth directly or after habituation for 90 min at various pH conditions from 4.0 to 6.0. Survivors at pH 3.5 were determined by plating on tryptic soy agar and incubating at 30 degrees C for 48 h. The kinetics (death rate) of the pathogens at pH 3.5 was calculated by fitting the data to an exponential model. RESULTS: Habituation to acidic environments provided protection of the pathogens against lethal acid conditions. This acid protection, however, was found to be pH dependent. For example, for E. coli O157:H7 an increased acid resistance was observed after habituation at a pH range from 4.0 to 5.5, while the maximum acid tolerance was induced at pH 5.0. Furthermore, the effect of low pH habituation was different among pathogens. For L. monocytogenes, E. coli O157:H7 and S. Typhimurium, the pH range within which habituation resulted to increased acid resistance was 5.0-6.0, 4.0-5.5 and 4.0-5.0, respectively, while the maximum acid tolerance was induced after habituation at pH 5.5, 5.0 and 4.5, respectively. SIGNIFICANCE: Acid stress conditions are common within current food processing technologies. The information on adaptive responses of L. monocytogenes, E. coli O157:H7 and S. Typhimurium after habituation to different pH environments provided in the present study, could lead to a more realistic evaluation of food safety concerns and to a better selection of processes in order to avoid adaptation phenomena and to minimize the potential for food safety risks.  相似文献   

2.
Acid is an important environmental condition encountered by Salmonella typhimurium during its pathogenesis. Our studies have shown that the organism can actively adapt to survive potentially lethal acid exposures by way of at least three possibly overlapping systems. The first is a two-stage system induced in response to low pH by logarithmic-phase cells called the log-phase acid tolerance response (ATR). It involves a major molecular realignment of the cell including the induction of over 40 proteins. The present data reveal that two additional systems of acid resistance occur in stationary-phase cells. One is a pH-dependent system distinct from log-phase ATR called stationary-phase ATR. It was shown to provide a higher level of acid resistance than log-phase ATR but involved the synthesis of fewer proteins. Maximum induction of stationary-phase ATR occurred at pH 4.3. A third system of acid resistance is not induced by low pH but appears to be part of a general stress resistance induced by stationary phase. This last system requires the alternative sigma factor, RpoS. Regulation of log-phase ATR and stationary-phase ATR remains RpoS independent. Although the three systems are for the most part distinct from each other, together they afford maximum acid resistance for S. typhimurium.  相似文献   

3.
AIMS: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular parameters contributing to the enhanced acid resistance of these isolates. METHODS AND RESULTS: Acid resistance was tested in 37 Salmonella enterica Typhimurium serovar DT104 (S. Typhimurium DT104) strains. Acid adaptation at pH 5 followed by exposure for 2 h at pH 2.5 in the 27 human, nine nonhuman, and in two reference strains, revealed strong variation of acid survival. After 2 h at pH 2.5 six strains of S. Typhimurium DT104 were considered high acid resistant as they displayed a level of survival >10%, 14 strains were considered intermediate acid resistant (level of survival was <10% and >0.01%) and 19 strains were considered low acid resistant (level of survival <0.01%). Six strains were selected for further studies and proteomics revealed a relatively high amount of phase 2 flagellin in an acid-sensitive strain and a relatively high amount of the beta component of the H(+)/ATPase in an acid-resistant strain. Two strains were slightly more heat resistant possibly as the result of increased levels of DnaK or GroEL. CONCLUSIONS: A significant difference could be detected between human and food isolates regarding their acid resistance; all high acid-resistant strains were human isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: S. Typhimurium DT104 is known for two decades and has a great impact on human health causing serious food-borne diseases. Our results suggest the existence of a positive correlation between acid resistance and pathogenicity in S. Typhimurium DT104 as all high acid-resistant strains were isolated from humans.  相似文献   

4.
Salmonella typhimurium was adapted to acid by exposure to hydrochloric acid at pH 5.8 for one to two doublings. Acid-adapted cells had increased resistance to inactivation by organic acids commonly present in cheese, including lactic, propionic, and acetic acids. Recovery of cells during the treatment with organic acids was increased 1,000-fold by inclusion of 0.1% sodium pyruvate in the recovery medium. Acid-adapted S. typhimurium cells survived better than nonadapted cells during a milk fermentation by a lactic acid culture. Acid-adapted cells also showed enhanced survival over a period of two months in cheddar, Swiss, and mozzarella cheeses kept at 5 degrees C. Acid adaptation was found in Salmonella spp., including Salmonella enteritidis, Salmonella choleraesuis subsp. choleraesuis serotype heidelberg, and Salmonella choleraesuis subsp. choleraesuis serotype javiana, associated with food poisoning. These observations support the theory that acid adaptation is an important survival mechanism enabling Salmonella spp. to persist in fermented dairy products and possibly other acidic food products.  相似文献   

5.
Acid adaptation promotes survival of Salmonella spp. in cheese.   总被引:10,自引:7,他引:3       下载免费PDF全文
Salmonella typhimurium was adapted to acid by exposure to hydrochloric acid at pH 5.8 for one to two doublings. Acid-adapted cells had increased resistance to inactivation by organic acids commonly present in cheese, including lactic, propionic, and acetic acids. Recovery of cells during the treatment with organic acids was increased 1,000-fold by inclusion of 0.1% sodium pyruvate in the recovery medium. Acid-adapted S. typhimurium cells survived better than nonadapted cells during a milk fermentation by a lactic acid culture. Acid-adapted cells also showed enhanced survival over a period of two months in cheddar, Swiss, and mozzarella cheeses kept at 5 degrees C. Acid adaptation was found in Salmonella spp., including Salmonella enteritidis, Salmonella choleraesuis subsp. choleraesuis serotype heidelberg, and Salmonella choleraesuis subsp. choleraesuis serotype javiana, associated with food poisoning. These observations support the theory that acid adaptation is an important survival mechanism enabling Salmonella spp. to persist in fermented dairy products and possibly other acidic food products.  相似文献   

6.
AIMS: To comparatively evaluate the adaptive stationary-phase acid tolerance response (ATR) in food-borne pathogens induced by culturing in glucose-containing media, as affected by strain variability and antibiotic resistance, growth temperature, challenge pH and type of acidulant. METHODS AND RESULTS: Antibiotic resistant or sensitive strains of Listeria monocytogenes, Salmonella including S. Typhimurium DT104, and Escherichia coli O157:H7 were cultured (30 degrees C for 24 h; 10 degrees C for up to 14 days) in trypticase soya broth with yeast extract (TSBYE) with 1% or without glucose to induce or prevent acid adaptation, respectively. Cultures were subsequently exposed to pH 3.5 or 3.7 with lactic or acetic acid at 25 degrees C for 120 min. Acid-adapted cultures were more acid tolerant than nonadapted cultures, particularly those of L. monocytogenes and Salmonella. No consistent, positive or negative, influence of antibiotic resistance on the pH-inducible ATR or acid resistance (AR) was observed. Compared with 30 degrees C cultures, growth and acid adaptation of L. monocytogenes and S. Typhimurium DT104 at 10 degrees C markedly reduced their ATR and AR in stationary phase. E. coli O157:H7 had the greatest AR, relying less on acid adaptation. A 0.2 unit difference in challenge pH (3.5-3.7) caused great variations in survival of acid-adapted and nonadapted cells. CONCLUSIONS: Culturing L. monocytogenes and Salmonella to stationary phase in media with 1% glucose induces a pH-dependent ATR and enhances their survival to organic acids; thus, this method is suitable for producing acid-adapted cultures for use in food challenge studies. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial pathogens may become acid-adapted in foods containing glucose or other fermentable carbohydrates. Low storage temperatures may substantially decrease the stationary-phase ATR of L. monocytogenes and S. Typhimurium DT104, but their effect on ATR of E. coli O157:H7 appears to be far less dramatic.  相似文献   

7.
Diffusion chambers with polycarbonate membrane-filter side walls were used to study the comparative survival of fecal indicators (Escherichia coli and Streptococcus faecalis) and enteric pathogens (Salmonella enteritidis, S. postdam, S. typhimurium, S. london and S. infantis) in natural seawater. It was observed that the percentages of sublethal injury increased with exposure to the marine environment, and that these environmental injuries depended on the microorganism considered. A large proportion of cells lost their ability to produce colonies on the selective media, but retained this capability on a nonselective medium. All microorganisms showed low survival percentages (less than 11%) after 48 hrs of exposure to seawater, but there is not a high difference among the microbial species studied. The results obtained in the present study showed that there were no differences in the survival rates between the serotypes of Salmonella tested. Moreover, Salmonella spp exhibited a similar persistence to E. coli in the marine environment.  相似文献   

8.
The relationship of acid adaptation to tolerance of other environmental stresses was examined in Salmonella typhimurium. S. typhimurium was adapted to acid by exposing the cells to mildly acidic conditions (pH 5.8) for one to two cell doublings. Acid-adapted cells were found to have increased tolerance towards various stresses including heat, salt, an activated lactoperoxidase system, and the surface-active agents crystal violet and polymyxin B. Acid adaptation increased cell surface hydrophobicity. Specific outer membrane proteins were induced by acid adaptation, but the lipopolysaccharide component appeared to be unaltered. These results show that acid adaptation alters cellular resistance to a variety of environmental stresses. The mechanism of acid-induced cross-protection involved changes in cell surface properties in addition to the known enhancement of intracellular pH homeostasis.  相似文献   

9.
The sigma factor RpoS is essential for stationary-phase-specific, multiple-stress resistance. We compared the viabilities (direct viable counts) and culturabilities (colony counts) in seawater of Escherichia coli and Salmonella typhimurium strains and those in which rpoS was deleted or which were deficient in guanosine 3',5'-bispyrophosphate (ppGpp) synthesis (relA spoT). RpoS, possibly via ppGpp regulation, positively influenced the culturability of these bacteria in oligotrophic seawater. This influence closely depended, however, upon the growth state of the cells and the conditions under which they were grown prior to their transfer to seawater. The protective effect of RpoS was observed only in stationary-phase cells grown at low osmolarity. A previous exposure of cells to high osmolarity (0.5 M NaCl) also had a strong influence on the effect of RpoS on cell culturability in seawater. Both E. coli and S. typhimurium RpoS mutants lost the ability to acquire a high resistance to seawater, as observed in both logarithmic-phase and stationary-phase RpoS+ cells grown at high osmolarity. A previous growth of S. typhimurium cells under anoxic conditions also modulated the incidence of RpoS on their culturability. When grown anaerobically at high osmolarity, logarithmic-phase S. typhimurium RpoS+ cells partly lost their resistance to seawater through preadaptation to high osmolarity. When grown anaerobically at high osmolarity until stationary phase, both RpoS+ and RpoS- cells retained very high levels of both viability and culturability and then did not enter the viable but nonculturable state for over 8 days in seawater because of an RpoS-independent, unknown mechanism.  相似文献   

10.
Aims: To evaluate the cross‐protected Salmonella enterica cells under acid and cold stress conditions. Methods and Results: The acid‐adapted S. enterica cells were exposed to pH 4·0 at 4 and 20°C. Recovery of sublethally injured cells was estimated by the difference between the counts obtained on trypticase soy agar (TSA) and xylose lysine desoxycholate (XLD) agar. The survival curves of nonadapted and acid‐adapted S. enterica cells at pH 4·0 were fitted with Weibull distribution model. The recovery behaviour of injured S. enterica cells was estimated by the modified Gompertz parameters. Acid‐adapted S. enterica were more resistant to subsequent acid shock than the nonadapted cells. The numbers of nonadapted S. enterica cells were decreased by 4·57 and 7·55 log CFU ml?1 at 4 and 20°C after 12‐day acid challenge, respectively. The acid adaptation induced cross‐protection and viable nonculturable (VBNC) state against low acid and cold stresses. The 7‐h adaptation showed the least recovery of injured cells. Conclusion: The results suggest that acid‐adapted S. enterica cells induced acid tolerance response and VBNC state. Significance and Impact of the Study: These results provide useful information for understanding the induction of cross‐protected and VBNC pathogens under various stresses, which might be needed in designing new food preservation strategies.  相似文献   

11.
Induction of acid tolerance response (ATR) of exponential-phase Escherichia coli K-12 cells grown and adapted at different conditions was examined. The highest level of protection against pH 2.5 challenges was obtained after adaptation at pH 4.5-4.9 for 60 min. To study the genetic systems, which could be involved in the development of log-phase ATR, we investigated the acid response of E. coli acid resistance (AR) mutants. The activity of the glutamate-dependent system was observed in exponential cells grown at pH 7.0 and acid adapted at pH 4.5 in minimal medium. Importantly, log-phase cells exhibited significant AR when grown in minimal medium pH 7.0 and challenged at pH 2.5 for 2 h without adaptation. This AR required the glutamate-dependent AR system. Acid protection was largely dependent on RpoS in unadapted and adapted cells grown in minimal medium. RpoS-dependent oxidative, glutamate and arginine-dependent decarboxylase AR systems were not involved in triggering log-phase ATR in cells grown in rich medium. Cells adapted at pH 4.5 in rich medium showed a higher proton accumulation rate than unadapted cells as determined by proton flux assay. It is clear from our study that highly efficient mechanisms of protection are induced, operate and play the main role during log-phase ATR.  相似文献   

12.
电解海水的抑菌活性及对食品加工表面材料的消毒效果   总被引:4,自引:0,他引:4  
为了考察直接电解海水消除细菌污染的可能性,本文将海水及海水稀释成不同浓度后通过氧化电解水装置进行电解不同时间后,所得酸性电解海水、碱性电解海水和中性电解海水对病原菌[埃希氏大肠杆菌(Escherichina coli)、沙门氏菌(Salmonella)、单核细胞增生李斯特菌(Listeria moncytogene)、摩化摩根(Morganella morganii)、副溶血性弧菌(Vibrio parahaemolyticus)]以及食品加工表面接触材料(地板砖、不锈钢板、瓷砖、手套、抹布)的消毒效果进行分析研究.结果表明,酸性电解海水具有良好的杀菌效果,能将107 CFU/mL的病原菌悬液在1 min内几乎全部杀死.碱性电解海水和中性水无明显的杀菌效果.通过模拟食品加工过程,对食品加工表面接触材料人为染菌,研究电解海水对表面材料的消毒效果,结果表明酸性电解海水仍能将表面材料含有的107CFU/cm2病原菌在5 min之内几乎全部杀灭.由此说明电解海水对食品加工表面接触材料具有明显的消毒效果,能取代以淡水为原料的电解水杀菌效果是高效廉价和不浪费淡水资源的一种理想消毒剂.  相似文献   

13.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

14.
In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.  相似文献   

15.
Campylobacter and Salmonella are the most commonly reported bacterial causes of human foodborne infections, and increasing proportions of these pathogens become resistant to medically important antimicrobial agents, imposing a burden on public health. Acquisition of resistance to antibiotics affects the adaptation and evolution of Salmonella and Campylobacter in various environments. Many resistance-conferring mutations entail a biological fitness cost, while others (e.g. fluoroquinolone resistance in Campylobacter) have no cost or even enhanced fitness. In Salmonella, the fitness disadvantage due to antimicrobial resistance can be restored by acquired compensatory mutations, which occur both in vitro and in vivo. The compensated or even enhanced fitness associated with antibiotic resistance may facilitate the spread and persistence of antimicrobial-resistant Salmonella and Campylobacter in the absence of selection pressure, creating a significant barrier for controlling antibiotic-resistant foodborne pathogens.  相似文献   

16.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

17.
AIMS: Considering the significant rise in the probiotic market in Columbia, and given the lack of reports concerning the microbial population and strain performance in products from different producers, this study aims at determining the number of viable starter bacteria and probiotics in bio-yoghurts available at the Columbian market, identifying the species and analysing the performance of the isolated strains in bile acid resistance, antagonistic activity against pathogens, and adherence capacity to human intestinal epithelial cells. METHODS AND RESULTS: Seven bio-yoghurts were analysed for the bacterial species present. Species identification was carried out using 16S rRNA gene targeted PCR. The cultured bacteria were tested for bile acid resistance, adherence to a human intestinal epithelial cell line, and antagonism against the pathogen Salmonella enterica serovar Typhimurium. A total of 17 different strains were identified. Based on plate counting, all bio-yoghurts have at least total viable cells of approximately 10(7) CFU ml(-1). Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were the most frequently isolated bacteria. Viable Bifidobacterium was only recovered from one product. However, after PCR analysis, DNA of this genus was confirmed in five out of seven products. Major differences were found for S. typhimurium antagonism. The adherence capacity to Caco-2 cells was observed in 10 of the isolated strains. In general, low survival to simulated gastric juice was observed. CONCLUSIONS: Some of the isolated strains have probiotic potential, although not all of them were present in the advised amount to exert beneficial health effects. However, the full correct scientific name of the isolated bacteria and their viable counts were not included on the product label. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing the identification and functionality of starter bacteria and probiotics present in dairy products on the Columbian market.  相似文献   

18.
Apoptosis of human keratinocytes after bacterial invasion   总被引:7,自引:0,他引:7  
In this study, we examined the invasive capacity of Staphylococcus aureus and Salmonella typhi in human keratinocytes and monitored the number of viable intracellular bacteria at different post-infection times. The strains tested entered keratinocytes; both S. typhi and S. aureus were internalized within 30 min to 2 h after infection. No intracellular multiplication was observed, but S. typhi and S. aureus remained viable 72 h after infection. We also demonstrated that keratinocyte death following S. typhi and S. aureus invasion occurs by apoptosis as shown by DNA fragmentation. After 24 h of infection with S. typhi, the number of cells undergoing apoptosis were higher compared to infection with S. aureus. For prolonged infection times (48 h, 72 h) with both bacteria, there was no significant change in the number of cells undergoing apoptosis. The results demonstrated that viable intracellular S. typhi and S. aureus induced apoptosis in keratinocyte cells.  相似文献   

19.
The interactions of bacterial pathogens with cells of the human leptomeninges are critical events in the progression of meningitis. An in vitro model based on the culture of human meningioma cells was used to investigate the interactions of the meningeal pathogens Escherichia coli K1, Haemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae. A rank order of association with meningioma cells was observed, with N. meningitidis showing the highest levels of adherence, followed by E. coli, S. pneumoniae and H. influenzae. Neisseria meningitidis and H. influenzae did not invade meningioma cells or induce cell death, but induced a concentration-dependent secretion of inflammatory mediators. Neisseria meningitidis induced higher levels of IL-6, MCP-1, RANTES and GM-CSF than H. influenzae, but there was no significant difference in the levels of IL-8 induced by both pathogens. Streptococcus pneumoniae was also unable to invade meningioma cells, but low concentrations of bacteria failed to stimulate cytokine secretion. However, higher concentrations of pneumococci led to cell death. By contrast, only E. coli K1 invaded meningioma cells directly and induced rapid cell death before an inflammatory response could be induced. These data demonstrate that the interactions of different bacterial pathogens with human meningeal cells are distinct, and suggest that different intervention strategies may be needed in order to prevent the morbidity and mortality associated with bacterial meningitis.  相似文献   

20.
沙门菌(Salmonella)是一种非常重要的食源性致病菌。由于食品基质的保护作用,有些沙门菌可以抵抗热胁迫而存活下来。存活细胞往往因为热胁迫或应激而导致细胞结构、生理特性、基因及蛋白表达发生变化,并会进一步对食品原料和加工环境造成持续污染。本文主要综述沙门菌在热胁迫前后细胞形态、菌体组分、细胞壁和细胞膜结构等方面的变化,结合基因和蛋白表达改变,探讨沙门菌在热胁迫下引起的热休克反应、抗逆性和致病性分子机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号