首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ovary structure of the myxophagan beetle, Hycdoscapha natans, was investigated by means of light and electron microscopy for the first time. Each of the two ovaries consists of three ovarioles, the functional units of insect oogenesis. The ovary type is telotrophic meroistic but differs strongly from the telotrophic ovary found among all polyphagous beetles investigated so far. All characters found here are typical of telotrophic ovaries of Sialidae and Raphidioptera. Both taxa belong to the Neuropterida. As in all telotrophic ovaries, all nurse cells are combined in an anterior chamber, the tropharium. The tropharium houses two subsets of germ cells: numerous nurse cell nuclei are combined in a central syncytium without any cell membranes in between, surrounded by a monolayer of single-germ cells, the tapetum cells. Each tapetum cell is connected to the central syncytium via an intercellular bridge. Tapetum cells of the posterior zone, which sufficiently contact prefollicular cells, are able to grow into the vitellarium and develop as oocytes. During previtellogenic and early vitellogenic growth, oocytes remain connected with the central syncytium of the tropharium via their anterior elongations, the nutritive cords. The morphological data are discussed in the light of those derived from ovaries of other Coleoptera and from the proposed sister group, the Neuropterida. The data strongly support a sister group relationship between Coleoptera and Neuropterida. Furthermore, several switches between polytrophic and telotrophic ovaries must have occurred during the radiation of ancient insect taxa.  相似文献   

2.
3.
The structure of aphid ovaries, including ovipare and virginopare morphs of five species, was investigated by light and electron microscopy. Aphids contain telotrophic meroistic ovarioles. The amount and distribution of cytoplasmic components of nurse cells, nutritive cords, and young oocytes are nearly identical to those known from scale insects and heteropterans. Each ovariole has a constant number of nurse cells and oocytes. In ovaries of ovipare morphs, the nurse cell nuclei enlarge by endomitosis (n = 28n?210n), whereas in virginopare morphs the nurse cell nuclei remain small (n = 22n?24n). Furthermore, in virginoparae the previtellogenic growth of oocytes is highly reduced, and vitellogenesis and chorionogenesis are blocked totally. Embryogenesis starts immediately after the shortened previtellogenic growth. In each ovariole, all germ cell descendants belong to one germ cell cluster that follows the 2n rule. The cluster normally contains 25 = (32) cells, but other mostly smaller numbers also occur. In contrast to polytrophic meroistic ovarioles, more than one cell of each cluster will develop into an oocyte. In Drepanosiphum platanoides, 16 (2n?1) nurse cells and 16 (2n?1) oocytes exist in each cluster, whereas, in Metopolophium dirhodum, 8 (2n?2) oocytes and 24 (2n?1 + 2n?2) nurse cells are normally found. In many ovarioles of Macrosiphum rosae, 21 nurse cells nourish 11 oocytes. Models of germ cell cluster formation in aphid ovaries are discussed.  相似文献   

4.
The morphoanatomy of the ovary in Veturius sinuatus (Eschscholtz) was studied by light and transmission electron microscopy. Data from the female gonad of this species provide more extended and precise knowledge regarding the organization of the ovary in Passalidae. Ovaries are composed of a pair of long telotrophic meroistic ovarioles, with some differences compared to the bauplan of this ovary type in Polyphaga (Coleoptera). The terminal filament has an enlarged proximal region with irregularly shaped cells in apparent degeneration process embedded in a membranous system. Globular structures with amorphous content associated with interstitial cells are distributed throughout the tropharium. Trophocytes develop with the reduction of the plasma membrane between sibling nurse cells of each cluster. Previtellogenic oocytes have an irregular shape and various cytoplasmic prolongations. As oogenesis advances, a single prolongation in the anterior part of the oocyte extends to the tropharium. The ovary structure is comparable to that found in other American species of passalids, and further, the conformation of the terminal filament could be a plesiomorphic character of the family.  相似文献   

5.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

6.
7.
Early stages of differentiation of the oocytes and nurse cells are comparatively studied in the polytrophic ovarioles in larvae, pupae and imago of the butterfly Laspeyresia pomonella and in the telotrophic ovarioles in larvae and imago of the bug Eurigaster integriceps. In L. pomonella, the oocytes and trophocytes, being the descendants of one oogonial cell, pass synchroniously through early stages of meiotic prophase up to the pachyten. After the pachyten chromosomes of the future trophocytes transform into diakinetic bivalents, whereas in the oocyte nucleus chromosomes retain their pachyten stage appearance. In the fifth instar larva of E. integriceps, two zones may be seen in the germarium of the telotrophic ovariole: the apical trophocyte zone and the distal oocyte zone. The oocytes develop up to the zygotene("bouquet") stage. As to the future trophocytes, they miss zygotene and reach directly diakinesis. Thus,the earlier divergence in the development ways of oocytes and trophocytes is observed in the telotrophic ovarioles, since the trophocyeres pass themeiotic stages more quickly then oocytes. The supposition is advanced that the quicker development of the nurse cells in the bug's ovarioles takes place due to missing the synaptonemal complex formation. The patterns of similarity and distinction between the telotrophic ovarioles in Coleoptera, on the one hand, and the polytrophic ovarioles of the butterfly L. pomonella and telotrophic ovarioles of the bug E. integricept, on the other hand, are discussed.  相似文献   

8.
Tribolium castaneum has telotrophic meroistic ovarioles of the Polyphaga type. During larval stages, germ cells multiply in a first mitotic cycle forming many small, irregularly branched germ-cell clusters which colonize between the anterior and posterior somatic tissues in each ovariole. Because germ-cell multiplication is accompanied by cluster splitting, we assume a very low number of germ cells per ovariole at the beginning of ovariole development. In the late larval and early pupal stages, we found programmed cell death of germ-cell clusters that are located in anterior and middle regions of the ovarioles. Only those clusters survive that rest on posterior somatic tissue. The germ cells that are in direct contact with posterior somatic cells transform into morphologically distinct pro-oocytes. Intercellular bridges interconnecting pro-oocytes are located posteriorly and are filled with fusomes that regularly fuse to form polyfusomes. Intercellular bridges connecting pro-oocytes to pro-nurse cells are always positioned anteriorly and contain small fusomal plugs. During pupal stages, a second wave of metasynchronous mitoses is initiated by the pro-oocytes, leading to linear subclusters with few bifurcations. We assume that the pro-oocytes together with posterior somatic cells build the center of determination and differentiation of germ cells throughout the larval, pupal, and adult stages. The early developmental pattern of germ-cell multiplication is highly similar to the events known from the telotrophic ovary of the Sialis type. We conclude that among the common ancestors of Neuropterida and Coleoptera, a telotrophic meroistic ovary of the Sialis type evolved, which still exists in Sialidae, Raphidioptera, and a myxophagan Coleoptera family, the Hydroscaphidae. Consequently, the telotrophic ovary of the Polyphaga type evolved from the Sialis type. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
The flea ovary: ultrastructure and analysis of cell clusters   总被引:1,自引:0,他引:1  
Büning J  Sohst S 《Tissue & cell》1988,20(5):783-795
Panoistic ovarioles are found in the order of fleas (Siphonaptera). Only in some species of the Hystrichopsylloidea do polytrophic meroistic ovaries occur. No stem cells and no dividing cystocytes are found in female imagines of Hystrichopsylla talpae. However, each germ cell cluster consists of 32 cells which are generated by five mitotic cycles during the pupal stage. One of the cells containing five intercellular bridges becomes the oocyte, the others serve as nurse cells. Thus, germ cell cluster formation follows the 2(n)-rule. However, no polyfusome is found and nurse cells do not form a rosette. Furthermore, nurse cells remain small and show the same ultrastructural characters as the oocytes, which became distinguishable from nurse cells only by their enhanced growth during pre-vitellogenesis. The first phase of pre-vitellogenesis is dominated by the production of an unknown cytoplasmatic component, consisting of spherical particles, clearly distinguishable from ribosomes by diameter and contrast. The next phase is characterized by a tremendous increase in the production of ribosomes. During this second phase another cytoplasmic component consisting of ball-like structures becomes prominent. During pre-vitellogenesis, germ cell nuclei undergo a pronounced structural change in which, finally, numerous extranucleolar particles predominate. Thus, H. talpae has a polytrophic meroistic ovary, but its oocyte genomes behave panoistically.  相似文献   

10.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

11.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

12.
We studied the ovary structure and initial stages of oogenesis in 15 representatives of several dermapteran taxa, including the epizoic Arixeniina. In all examined species, the ovaries are meroistic–polytrophic. The ovaries of the basal taxa (‘Pygidicranidae’, ‘Diplatyidae’, and Labiduridae) are composed of elongated ovarioles, attached to short lateral oviducts. In these groups, ovarioles contain several (more than 30) ovarian follicles in a linear arrangement. In the Eudermaptera, the ovaries are composed of 1–6 (Spongiphoridae) or 20–40 (Forficulidae, Chelisochidae) short ovarioles (containing 2 ovarian follicles only) that open to strongly elongated lateral oviducts. In all investigated dermapterans, the ovarian follicles are composed of two germline cells only: an oocyte and a polyploid nurse cell that are covered by a simple follicular epithelium. Our studies indicate that despite a rather unique morphology of the ovarian follicles in the examined species, the processes leading to the formation of the oocyte and nurse cell units are significantly different in basal versus derived taxa.The ovaries of Arixenia esau are composed of 3 short ovarioles attached to a strongly dilated lateral oviduct, ‘the uterus’, containing developing embryos. Histological analysis suggests that the origin of the oocyte and nurse cell units in this species follows the pattern described in eudermapterans.The interpretation of our results in an evolutionary context supports the monophyly of the Dermaptera and Eudermaptera, and the inclusion of the Arixeniina and Hemimerina in the latter taxon.  相似文献   

13.
Hymenopteran insects have meroistic polytrophic ovaries characterised by trophocytes associated with oocytes inside the follicles. In pro-ovigenic species, all oocytes mature before emergence and no trace of oogenesis is visible in adult females. Pro-ovigeny is a rare condition among Hymenoptera, but common in pollinating fig wasps. In the present investigation, we studied adult and pupa females of three fig wasp species with different trophic strategies. We demonstrated that females of Pegoscapus aerumnosus and Idarnes spp. have an unusual ovarian organisation (i.e. each ovariole has only one mature egg and no oocyte) that has led to misleading interpretation of fig wasp reproductive anatomy. The ovaries of these studied species have several ovarioles, recognisable by the presence of nuclei of tunica propria cells surrounding them. Each adult wasp ovariole had one mature egg. None of the pupae had mature eggs, but all of them had follicles with oocytes in different developmental stages. The studied fig wasps are pro-ovigenic, irrespective of their trophic strategy, since there were no signs of ovigeny in adult females. We discuss ecological and phylogenetic factors that could play a role in fig wasps reproductive strategies.  相似文献   

14.
We have used the two-dimensional vibrating probe to examine spatial and temporal patterns in the transcellular current flow around telotrophic ovarioles of the insect Rhodnius prolixus. We demonstrate a dynamic pattern of currents which correlates with various stages of vitellogenesis. Asymmetries exist in the radial current pattern around intact ovarioles, particularly around the terminal follicle, and may correlate with early developmental axes. The extra-cellular current pattern is largely reflected by a similar, though weaker pattern of currents over the germ cell membranes, indicating that both germ cell and somatic cell membranes are involved in current generation. Current enters previtellogenic oocytes and leaves oocytes entering vitellogenesis. We speculate that current reversal and loss of trophic cord contact may represent an electrophysiological feedback control mechanism during oogenesis.  相似文献   

15.
Three different ovariole types exist in insects: panoistic, polytrophic- and telotrophic-meroistic. Their ontogenetic development is comparable to all insect orders. Each ovariole is composed of somatic tissues and germ cells.Panoistic ovarioles can be developed: (1) by totally blocking germ cell cluster division (e.g. in “primitive” insect orders; and (2) after germ cell cluster formation by final cleavage of cystocytes, which develop as oocytes (e.g. in stoneflies or thrips).Polytrophic-meroistic ovaries, showing a set of identical characters, are found among hemirnetabolous and holometabolous insects, indicating a “basic type” of common origin. One characteristic feature is the differentiation of only one oocyte, which is derived from one central cell of the cluster, whereas all other siblings are transformed into nurse cells.Telotrophic ovaries differ from polytrophic ovaries by retention of all nurse cells in the anterior trophic chamber. In addition, oocyte-nurse cell determination can be shifted towards more oocytes in a cluster, and clusters or subclusters can fuse by cell membrane reduction among nurse cells. This type of ovary developed independently 3 times from polytrophic ancestors and once in mayflies directly from panoistic ancestors.  相似文献   

16.
The tropharium of the telotrophic ovarioles of Rhodnius is syncytial with the nurse cell nuclei located in tortuous finger-like projections arborizing from a common cytoplasmic area, the trophic core. The nurse cell nuclei exhibit prominent nucleoli. Located adjacent to the nuclear envelope are masses of granular material both within the nucleus and adjoining cytoplasm. The cytoplasm consists primarily of ribosomes and mitochondria. The trophic core and the trophic cords that connect the core to individual oocytes characteristically possess parallel arrays of microtubules with ribosomes and mitochondria interspersed between. Surrounding the nurse tissue (germarium) is a thin layer of squamous cells comprising the inner sheath. The inner sheath is encompassed by the non-cellular tunica propria superficial to which are two external cellular sheaths. The syncytial nature of the tropharium appears to arise as a result of the fusion of many entangled nurse cell-oocyte complexes during the late fifth instar. The structural similarities, and possible homologies with the polytrophic type of ovariole is discussed.  相似文献   

17.
The almond wasp Eurytoma amvgdali (Hymenoptera: Eurytomidac) feeds and oviposits exclusively in almonds and therefore is characterized as an insect of economic importance. Its meroistic polytrophic ovaries include follicles with a tri-partitc configuration. The mature follicles exhibit two filaments occupying the two poles of the egg. One is the micropylar filament while the other might serve for respiration since it is likely that its flattened end layers remain outside the almond fruit. The eggshell is formed by aposition and the follicle cells, which surround the follicle until the end of oogenesis, may be responsible for protein synthesis and secretion which finally lead to the assembly of the eggshell. The eggshell comprises the thin vitelline membrane, possibly a 'wax' layer of waterproofing function, a transluscent layer which appears amorphous even at the end of choriogenesis, a granular layer, including large and small electron-dense granules, and finally a columnar layer very similar to layers found in other insect species of the same or different orders. Peroxidase is histochemicalLY found for the first time in an eggshell of the Hymenoptera order: the tranluscent layer in particular is positively stained (electron-dense). Two possible roles of this peroxidatic activity are discussed, first, in comparison to other fruit-infesting insects, we assume that elastic chorion is produced through the function of peroxidase induced bonds (resilin-type bonds), very important for avoiding premature breaking, while being oviposited through a narrow ovipositor. Second, referring to other studies, this layer can play a bactericidal role for additional embryonic itprotection.  相似文献   

18.
The polytrophic ovarioles of three insect species, the fruit fly Drosophila melanogaster, the fungus gnat Bradysia tritici, and the honeybee Apis mellifera, were compared morphologically and with respect to the cytological organization of the peripheral somatic layers. Staining with rhodaminyl-phalloidin revealed differences in the organization of the muscle strands of the epithelial sheath and the microfilament pattern in the basal part of the follicular epithelium (mid-vitellogenic stages). Also, the size of the intercellular space between the follicle cells differed considerably in the three analyzed species. The basement membrane of Drosophila and Bradysia follicles was partially digested using purified collagenase. The observed morphological changes indicated that in both species the basement membrane of the follicular epithelium plays an important role in shaping the follicles. The possible functional significance of the species-specific structural differences is discussed.  相似文献   

19.
Several parts of the reproductive system of both sexes ofDermatophagoides farinae andD. pteronyssinus are investigated and compared by light-, scanning electron-, and transmission electron microscopy. New techniques have been employed for scanning of the internal structures of these mites. The male reproductive system consists of unpaired testis, paired vasa deferentia, an accessory gland, ejaculatory duct, and copulatory organ. The female reproductive system consists of bursa copulatrix, ductus bursae, receptaculum seminis, paired ducti receptaculi, ovaries, oviducts, one chorion gland, ovipositor, and oviporus. Testis as well as ovaries are characterized by syncytia of nutritional function. The specifics of spermatogenesis are discussed in connection with sperm transfer. Similarities between the construction of the ovaries and oogenesis in astigmatic mites and telotrophic meroistic ovaries in insects are discussed.  相似文献   

20.
In Drosophila, the JAK-STAT signalling pathway regulates a broad array of developmental functions including segmentation and oogenesis. Here we analysed the functions of Tribolium JAK-STAT signalling factors and of Suppressor Of Cytokine Signalling (SOCS) orthologues, which are known to function as negative regulators of JAK-STAT signalling, during telotrophic oogenesis and short-germ embryogenesis. The beetle Tribolium features telotrophic ovaries, which differ fundamentally from the polytrophic ovary of Drosophila. While we found the requirement for JAK-STAT signalling in specifying the interfollicular stalk to be principally conserved, we demonstrate that these genes also have early and presumably telotrophic specific functions. Moreover, we show that the SOCS genes crucially contribute to telotrophic Tribolium oogenesis, as their inactivation by RNAi results in compound follicles. During short-germ embryogenesis, JAK-STAT signalling is required in the maintenance of segment primordia, indicating that this signalling cascade acts in the framework of the segment-polarity network. In addition, we demonstrate that JAK-STAT signalling crucially contributes to early anterior patterning. We posit that this signalling cascade is involved in achieving accurate levels of expression of individual pair-rule and gap gene domains in early embryonic patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号