首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
Type 1 diabetes mellitus (T1DM) is caused by the selective destruction of insulin-producing β-cells. This process is mediated by cells of the immune system through release of nitric oxide, free radicals and pro-inflammatory cytokines, which induce a complex network of intracellular signalling cascades, eventually affecting the expression of genes involved in β-cell survival.The aim of our study was to investigate possible mechanisms of resistance to cytokine-induced β-cell death. To this purpose, we created a cytokine-resistant β-cell line (β-TC3R) by chronically treating the β-TC3 murine insulinoma cell line with IL-1β + IFN-γ. β-TC3R cells exhibited higher proliferation rate and resistance to cytokine-mediated cell death in comparison to the parental line. Interestingly, they maintained expression of β-cell specific markers, such as PDX1, NKX6.1, GLUT2 and insulin. The analysis of the secretory function showed that β-TC3R cells have impaired glucose-induced c-peptide release, which however was only moderately reduced after incubation with KCl and tolbutamide. Gene expression analysis showed that β-TC3R cells were characterized by downregulation of IL-1β and IFN-γ receptors and upregulation of SOCS3, the classical negative regulator of cytokines signaling. Comparative proteomic analysis showed specific upregulation of 35 proteins, mainly involved in cell death, stress response and folding. Among them, SUMO4, a negative feedback regulator in NF-kB and JAK/STAT signaling pathways, resulted hyper-expressed. Silencing of SUMO4 was able to restore sensitivity to cytokine-induced cell death in β-TC3R cells, suggesting it may play a key role in acquired cytokine resistance by blocking JAK/STAT and NF-kB lethal signaling.In conclusion, our study represents the first extensive proteomic characterization of a murine cytokine-resistant β-cell line, which might represent a useful tool for studying the mechanisms involved in resistance to cytokine-mediated β-cell death. This knowledge may be of potential benefit for patients with T1DM. In particular, SUMO4 could be used as a therapeutical target.  相似文献   

5.
Insulin receptor substrate-2 (IRS-2) plays a critical role in the survival and function of pancreatic β-cells. Gene disruption of IRS-2 results in failure of the β-cell compensatory mechanism and diabetes. Nonetheless, the regulation of IRS-2 protein expression in β-cells remains largely unknown. Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, has been implicated in β-cell damage in type 1 and type 2 diabetes. The effects of iNOS on IRS-2 expression have not yet been investigated in β-cells. Here, we show that iNOS and NO donor decreased IRS-2 protein expression in INS-1/832 insulinoma cells and mouse islets, whereas IRS-2 mRNA levels were not altered. Interleukin-1β (IL-1β), alone or in combination with interferon-γ (IFN-γ), reduced IRS-2 protein expression in an iNOS-dependent manner without altering IRS-2 mRNA levels. Proteasome inhibitors, MG132 and lactacystin, blocked the NO donor-induced reduction in IRS-2 protein expression. Treatment with NO donor led to activation of glycogen synthase kinase-3β (GSK-3β) and c-Jun N-terminal kinase (JNK/SAPK) in β-cells. Inhibition of GSK-3β by pharmacological inhibitors or siRNA-mediated knockdown significantly prevented NO donor-induced reduction in IRS-2 expression in β-cells. In contrast, a JNK inhibitor, SP600125, did not effectively block reduced IRS-2 expression in NO donor-treated β-cells. These data indicate that iNOS-derived NO reduces IRS-2 expression by promoting protein degradation, at least in part, through a GSK-3β-dependent mechanism. Our findings suggest that iNOS-mediated decreased IRS-2 expression may contribute to the progression and/or exacerbation of β-cell failure in diabetes.  相似文献   

6.
7.
8.
Q Wei  YQ Sun  J Zhang 《Peptides》2012,37(1):18-24
Lipotoxicity plays an important role in the underlying mechanism of type 2 diabetes mellitus. Prolonged exposure of pancreatic β-cells to elevated concentrations of fatty acid is associated with β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effects, increased β-cell mass, and improvement of β-cell function. The mechanism of GLP-1 receptor agonists' protection of pancreatic β-cells against lipotoxicity is not completely understood. We investigated whether the GLP-1 receptor agonist exendin-4 promoted cell survival and attenuated palmitate-induced apoptosis in murine pancreatic β-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which was inhibited by exendin-4. Exposure of MIN6 cells to exendin-4 caused rapid activation of protein kinase B (PKB) under lipotoxic conditions. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis and down-regulated Bax in MIN6 cells. Exendin-4 enhanced glucose-stimulated insulin secretion in the presence of palmitate. Our findings suggest that exendin-4 may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB and inhibition of the mitochondrial pathway.  相似文献   

9.
10.
We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.  相似文献   

11.
In neurodegenerative disorders, activated glial cells overproduce nitric oxide (NO), which causes neurotoxicity. Inducible NO synthase (iNOS) is a potential therapeutic target in neurodegenerative diseases. Here, we examined the action of fucoidan, a high-molecular-weight sulfated polysaccharide, on tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced NO production in C6 glioma cells. Fucoidan suppressed TNF-α- and IFN-γ-induced NO production and iNOS expression. In addition, fucoidan inhibited TNF-α- and IFN-γ-induced AP-1, IRF-1, JAK/STAT and p38 mitogen-activated protein kinase (MAPK) activation and induced scavenger receptor B1 (SR-B1) expression. Blocking of SR-B1 did not reverse the inhibitory effect of fucoidan on TNF-α- and IFN-γ- stimulated NO production. However, inhibition of SR-B1 expression by siRNA increased iNOS expression and p38 phosphorylation in TNF-α- and IFN-γ-stimulated C6 cells.Overall, p38 MAPK, AP-1, JAK/STAT and IRF-1 play an important role in the inhibitory effect of fucoidan on TNF-α- and IFN-γ-stimulated NO production, and intracellular SR-B1 expression may be related to the inhibition of iNOS expression by fucoidan via regulation of p38 phosphorylation. The present results also suggest that fucoidan could be a potential therapeutic agent for treating inflammatory-related neuronal injury in neurological disorders.  相似文献   

12.
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines.  相似文献   

13.
Interferon-gamma (IFN-γ) is known to cause apoptosis of lens epithelial cells and cataract formation, but the molecular mechanisms underlying these effects are unknown. IFN-γ induces the expression of indoleamine 2,3-dioxygenase (IDO) and thereby enhances the production of kynurenines from l-tryptophan. The present study was designed to investigate the role of IDO and kynurenines in the IFN-γ-mediated apoptosis of lens epithelial cells and to determine the signaling pathways involved. IFN-γ stimulated the synthesis of IDO and activated the JAK–STAT1 signaling pathway in human lens epithelial cells (HLE-B3) in a dose-dependent manner. Meanwhile, fludarabine, an inhibitor of STAT1 activation, blocked IFN-γ-mediated IDO expression. N-Formylkynurenine, kynurenine (Kyn) and 3-hydroxykynurenine (3OHKyn) were detected in cells, with 3OHKyn concentrations being higher than those of the other kynurenines. The intracellular production of kynurenines was completely blocked by 1-methyl-dl-tryptophan (MT), an inhibitor of IDO. Kyn- and 3OHKyn-modified proteins were detected in IFN-γ-treated cells. The induction of IDO by IFN-γ in HLE-B3 cells caused increases in intracellular ROS, cytosolic cytochrome c and caspase-3 activity, along with a decrease in protein-free thiol content. These changes were accompanied by apoptosis. At equimolar concentrations, 3OHKyn caused higher levels of apoptosis than the other kynurenines in HLE-B3 cells. MT and a kynurenine 3-hydroxylase inhibitor (Ro61-8048) effectively inhibited IFN-γ-mediated apoptosis in HLE-B3 cells. Our results show that the induction of IDO by IFN-γ is JAK–STAT1 pathway-dependent and that this induction causes 3OHKyn-mediated apoptosis in HLE-B3 cells. These data suggest that IDO-mediated kynurenine formation could play a role in cataract formation related to chronic inflammation.  相似文献   

14.
Fatty acid-induced damage in pancreatic β-cells is assumed to play an important role in the development of type 2 diabetes. Lactogens (prolactin, placental lactogen and growth hormone) improve β-cell survival via STAT5 activation but the molecular targets are incompletely characterized. The aim of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP2, FATP1 and FATP4 were unchanged. RNAi against FAT/CD36 decreased fatty acid-induced apoptosis. Over-expression of constitutively active STAT5 was able to mimic hGH’s suppression of FAT/CD36 expression, whereas dominant negative STAT5 was unable to block the effect of hGH indicating that STAT5 did not bind directly to the FAT/CD36 promoter. The hGH-mediated suppression of FAT/CD36 mRNA was associated with a decrease in palmitate uptake and fatty acid-induced basal hyper-secretion of insulin resulting in improved glucose-stimulated insulin secretion. This study suggests that hGH can protect β-cells against fatty acid-induced damages.  相似文献   

15.
Advanced glycation endproducts (AGEs) and the receptor for AGEs (RAGE) have been linked to the pathogenesis of diabetic complications, such as retinopathy, neuropathy, and nephropathy. AGEs may induce β-cell dysfunction and apoptosis, another complication of diabetes. However, the role of AGE-RAGE interaction in AGE-induced pancreatic β-cell failure has not been fully elucidated. In this study, we investigated whether AGE–RAGE interaction could mediate β-cell failure. We explored the potential mechanisms in insulin secreting (INS-1) cells from a pancreatic β-cell line, as well as primary rat islets. We found that glycated serum (GS) induced apoptosis in pancreatic β-cells in a dose- and time-dependent manner. Treatment with GS increased RAGE protein production in cultured INS-1 cells. GS treatment also decreased bcl-2 gene expression, followed by mitochondrial swelling, increased cytochrome c release, and caspase activation. RAGE antibody and knockdown of RAGE reversed the β-cell apoptosis and bcl-2 expression. Inhibition of RAGE prevented AGE-induced pancreatic β-cell apoptosis, but could not restore the function of glucose stimulated insulin secretion (GSIS) in rat islets. In summary, the results of the present study demonstrate that AGEs are integrally involved in RAGE-mediated apoptosis and impaired GSIS dysfunction in pancreatic β-cells. Inhibition of RAGE can effectively protect β-cells against AGE-induced apoptosis, but cannot reverse islet dysfunction in GSIS.  相似文献   

16.
17.
Pathology driving β-cell loss in diabetes is poorly defined. Chronic subclinical inflammation is associated with β-cell dysfunction. Acute in vitro exposure of islets and β-cells to an inflammatory cytokine cocktail (IL-1β/TNF-α/IFN-γ) results in loss of cell function and viability. The contribution of each cytokine alone or in combination has been evaluated in homogeneous mouse β-cell lines and primary mouse islets. Cytokine cooperation is required for β-cell apoptosis with the most potent combinations including IL-1β. Single cytokine exposure did not induce β-cell apoptosis. Expression of endogenous interleukin-12 in β-cells correlated with inflammatory cytokine combinations that induced β-cell apoptosis. Uncoupling of the IL-12 axis by a block of IL-12 production, inhibition of IL-12 receptor/ligand interaction or disruption of IL-12 receptor signaling conferred protection to β-cells from apoptosis induced by inflammatory cytokine stimulation. Signaling through STAT4 is indicated since disruption of IL-12 concomitantly reduced inflammatory cytokine stimulation of endogenous IFN-γ expression. Primary mouse islets isolated from mice deficient in STAT4 show resistance to inflammatory-cytokine-induced cell death when compared to islets isolated from wild type mice. Collectively, the data identify IL-12 as an important mediator of inflammation induced β-cell apoptosis. Modulation of IL-12/STAT4 signaling may be a valuable therapeutic strategy to preserve islet/β-cell viability in established diabetes.  相似文献   

18.
Type 1 diabetes is characterized by a loss of islet β-cells. Ciliary neurotrophic factor (CNTF) protects pancreatic islets against cytokine-induced apoptosis. For this reason, we assessed whether CNTF protects mice against streptozotocin-induced diabetes (a model of type 1 diabetes) and the mechanism for this protection. WT and SOCS3 knockdown C57BL6 mice were treated for 5 days with citrate buffer or 0.1 mg/kg CNTF before receiving 80 mg/kg streptozotocin. Glycemia in non-fasted mice was measured weekly from days 0–28 after streptozotocin administration. Diabetes was defined as a blood glucose > 11.2 mmol/liter. Wild-type (WT) and SOCS3 knockdown MIN6 cells were cultured with CNTF, IL1β, or both. CNTF reduced diabetes incidence and islet apoptosis in WT but not in SOCS3kd mice. Likewise, CNTF inhibited apoptosis in WT but not in SOCS3kd MIN6 cells. CNTF increased STAT3 phosphorylation in WT and SOCS3kd mice and MIN6 cells but reduced STAT1 phosphorylation only in WT mice, in contrast to streptozotocin and IL1β. Moreover, CNTF reduced NFκB activation and required down-regulation of inducible NO synthase expression to exert its protective effects. In conclusion, CNTF protects mice against streptozotocin-induced diabetes by increasing pancreatic islet survival, and this protection depends on SOCS3. In addition, SOCS3 expression and β-cell fate are dependent on STAT1/STAT3 ratio.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号