首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.  相似文献   

2.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

3.
L-655,708 is a ligand for the benzodiazepine site of the gamma-aminobutyric acid type A (GABA(A)) receptor that exhibits a 100-fold higher affinity for alpha5-containing receptors compared with alpha1-containing receptors. Molecular biology approaches have been used to determine which residues in the alpha5 subunit are responsible for this selectivity. Two amino acids have been identified, alpha5Thr208 and alpha5Ile215, each of which individually confer approximately 10-fold binding selectivity for the ligand and which together account for the 100-fold higher affinity of this ligand at alpha5-containing receptors. L-655,708 is a partial inverse agonist at the GABA(A) receptor which exhibited no functional selectivity between alpha1- and alpha5-containing receptors and showed no change in efficacy at receptors containing alpha1 subunits where amino acids at both of the sites had been altered to their alpha5 counterparts (alpha1Ser205-Thr,Val212-Ile). In addition to determining the binding selectivity of L-655,708, these amino acid residues also influence the binding affinities of a number of other benzodiazepine (BZ) site ligands. They are thus important elements of the BZ site of the GABA(A) receptor, and further delineate a region just N-terminal to the first transmembrane domain of the receptor alpha subunit that contributes to this binding site.  相似文献   

4.
Stargazer mice fail to express the gamma2 isoform of transmembrane alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor regulatory proteins that has been shown to be absolutely required for the trafficking and synaptic targeting of excitatory AMPA receptors in adult murine cerebellar granule cells. Here we show that 30 +/- 6% fewer inhibitory gamma-aminobutyric acid, type A (GABA(A)), receptors were expressed in adult stargazer cerebellum compared with controls because of a specific loss of GABA(A) receptor expression in the cerebellar granule cell layer. Radioligand binding assays allied to in situ immunogold-EM analysis and furosemide-sensitive tonic current estimates revealed that expression of the extrasynaptic (alpha6betaxdelta) alpha6-containing GABA(A) receptor were markedly and selectively reduced in stargazer. These observations were compatible with a marked reduction in expression of GABA(A) receptor alpha6, delta (mature cerebellar granule cell-specific proteins), and beta3 subunit expression in stargazer. The subunit composition of the residual alpha6-containing GABA(A) receptors was unaffected by the stargazer mutation. However, we did find evidence of an approximately 4-fold up-regulation of alpha1betadelta receptors that may compensate for the loss of alpha6-containing GABA(A) receptors. PCR analysis identified a dramatic reduction in the steady-state level of alpha6 mRNA, compatible with alpha6 being the primary target of the stargazer mutation-mediated GABA(A) receptor abnormalities. We propose that some aspects of assembly, trafficking, targeting, and/or expression of extrasynaptic alpha6-containing GABA(A) receptors in cerebellar granule cells are selectively regulated by AMPA receptor-mediated signaling.  相似文献   

5.
The multifunctional scaffolding protein gephyrin is a key player in the formation of the postsynaptic scaffold at inhibitory synapses, clustering both inhibitory glycine receptors (GlyRs) and selected GABA(A) receptor (GABA(A)R) subtypes. We report a direct interaction between the GABA(A)R α3 subunit and gephyrin, mapping reciprocal binding sites using mutagenesis, overlay, and yeast two-hybrid assays. This analysis reveals that critical determinants of this interaction are located in the motif FNIVGTTYPI in the GABA(A)R α3 M3-M4 domain and the motif SMDKAFITVL at the N terminus of the gephyrin E domain. GABA(A)R α3 gephyrin binding-site mutants were unable to co-localize with endogenous gephyrin in transfected hippocampal neurons, despite being able to traffic to the cell membrane and form functional benzodiazepine-responsive GABA(A)Rs in recombinant systems. Interestingly, motifs responsible for interactions with GABA(A)R α2, GABA(A)R α3, and collybistin on gephyrin overlap. Curiously, two key residues (Asp-327 and Phe-330) in the GABA(A)R α2 and α3 binding sites on gephyrin also contribute to GlyR β subunit-E domain interactions. However, isothermal titration calorimetry reveals a 27-fold difference in the interaction strength between GABA(A)R α3 and GlyR β subunits with gephyrin with dissociation constants of 5.3 μm and 0.2 μm, respectively. Taken together, these observations suggest that clustering of GABA(A)R α2, α3, and GlyRs by gephyrin is mediated by distinct mechanisms at mixed glycinergic/GABAergic synapses.  相似文献   

6.
Two quinolines identified as positive allosteric modulators of γ-aminobutyric acid (GABA)(A) receptors containing the α(2) subunit, 9-amino-2-cyclobutyl-5-(6-methoxy-2-methylpyridin-3-yl)-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one (4) and 9-amino-2-cyclobutyl-5-(2-methoxypyridin-3-yl)-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one (5), were radiolabelled at the methoxy position with carbon-11 (half-life=20.4 min). These quinolines represent a new class of potential radiotracers for imaging the benzodiazepine site of GABA(A) receptors with positron emission tomography (PET). Both radiotracers were reliably isolated following reaction of their respective pyridinone/pyridinol tautomeric precursors with [(11)C]CH(3)I in clinically useful, formulated quantities (2.9% and 2.7% uncorrected radiochemical yield, respectively, relative to [(11)C]CO(2)) with high specific activities (>70 GBq μ mol(-1); >2 Ci μ mol(-1)) and high radiochemical purities (>95%). The radiosyntheses reported herein represent rare examples of selectively isolating radiolabelled compounds bearing [(11)C]2-methoxypyridine moieties. Although both radiotracers demonstrated promising imaging characteristics based on preliminary ex vivo biodistribution studies in conscious rodents, higher brain uptake was observed with [(11)C]5 and therefore this radiotracer was further evaluated. Carbon-11 labelled 5 readily penetrated the brain (>1 standard uptake value in cortical regions at 15 min post-injection of the radiotracer), had an appropriate regional brain distribution for GABA(A) receptors that appeared to be reversible, and did not show any appreciable radiometabolites in rat brain homogenates up to 15 min post-injection. Preadministration of flumazenil (1, 10 mg kg(-1)) or 5 (5 mg kg(-1)) effectively blocked >50% of [(11)C]5 binding to the GABA(A) receptor-rich regions, thereby suggesting that this radiotracer is worthy of further evaluation for imaging GABA(A) receptors. Additionally (R,S)-N-(1-(3-chloro-4-methoxyphenyl)ethyl)-3,3-diphenylpropan-1-amine, 6, an allosteric modulator of GABA(B) receptors, was efficiently labelled in one step using [(11)C]methyl iodide. Ex vivo biodistribution studies in conscious rats showed low brain uptake, therefore, efforts are underway to discover alternative radiotracers to image GABA(B). In conclusion, [(11)C]5 is worthy of further evaluation in higher species for imaging GABA(A) receptors in the central nervous system.  相似文献   

7.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

8.
Heteropentameric nicotinic acetylcholine receptors (nAChR) mediate fast synaptic transmission in ganglia of the autonomic nervous system. It is undisputed that α3 and β4 are the predominant subunits in the superior cervical ganglion (SCG); however, reports on the presence of receptors that contain α4 have been controversial. Here, we have searched for the presence of α4-containing nAChRs in the postnatal rat and mouse SCG. We now show by immunoprecipitation combined with radioligand binding that α4-containing receptors constitute about 20% of hetero-oligomeric nAChRs in postnatal Day 3 (P3) mice. However, already by P9, the level of α4 approaches zero. In contrast, the number of α4-containing receptors is close to zero in the rat SCG at all times investigated. Deletion of the β2 subunit by using α5β2-double knockout (KO) mice removes all α4-containing receptors, suggesting that in the postnatal mouse SCG, α4 co-assembles only with β2 but not with β4. α4β2 receptors are, on the other hand, up-regulated in the SCG of P3 α5β4-double KO mice, where they make up about 50% of receptors that bind [(3) H]-epibatidine. Nonetheless, receptors on the surface of SCG neurons from α5β4-double KO mice maintained for one to two days in culture comprise <10% of α4β2 and >90% of α3β2, as determined by patch clamp recordings with α4β2- and α3β2-specific ligands. We propose that in the P3 SCG of wild type mice, α3β4 (±α5) represent about 62% of receptors, whereas 17% are α3β2β4, and 21% are α4β2 (±α5) receptors.  相似文献   

9.
Novel synthetic routes have been devised for the preparation of previously inaccessible 2,3,7-trisubstituted pyrazolo[1,5-d][1,2,4]triazines 2. These compounds are high affinity ligands for the GABA(A) benzodiazepine binding site and some analogues show functional selectivity for agonism at alpha3-containing receptors over alpha1-containing receptors with the lead compound being 32.  相似文献   

10.
GABA(A) receptors (GABA(A)-Rs) are localized at both synaptic and extrasynaptic sites, mediating phasic and tonic inhibition, respectively. Previous studies suggest an important role of γ2 and δ subunits in synaptic versus extrasynaptic targeting of GABA(A)-Rs. Here, we demonstrate differential function of α2 and α6 subunits in guiding the localization of GABA(A)-Rs. To study the targeting of specific subtypes of GABA(A)-Rs, we used a molecularly engineered GABAergic synapse model to precisely control the GABA(A)-R subunit composition. We found that in neuron-HEK cell heterosynapses, GABAergic events mediated by α2β3γ2 receptors were very fast (rise time ~2 ms), whereas events mediated by α6β3δ receptors were very slow (rise time ~20 ms). Such an order of magnitude difference in rise time could not be attributed to the minute differences in receptor kinetics. Interestingly, synaptic events mediated by α6β3 or α6β3γ2 receptors were significantly slower than those mediated by α2β3 or α2β3γ2 receptors, suggesting a differential role of α subunit in receptor targeting. This was confirmed by differential targeting of the same δ-γ2 chimeric subunits to synaptic or extrasynaptic sites, depending on whether it was co-assembled with the α2 or α6 subunit. In addition, insertion of a gephyrin-binding site into the intracellular domain of α6 and δ subunits brought α6β3δ receptors closer to synaptic sites. Therefore, the α subunits, together with the γ2 and δ subunits, play a critical role in governing synaptic versus extrasynaptic targeting of GABA(A)-Rs, possibly through differential interactions with gephyrin.  相似文献   

11.
Gephyrin is the major protein determinant for the clustering of inhibitory neurotransmitter receptors. Earlier analyses revealed that gephyrin tightly binds to residues 398-410 of the glycine receptor β subunit (GlyR β) and, as demonstrated only recently, also interacts with GABA(A) receptors (GABA(A)Rs) containing the α1, α2, and α3 subunits. Here, we dissect the molecular basis underlying the interactions between gephyrin and GABA(A)Rs containing these α-subunits and compare them to the crystal structure of the gephyrin-GlyR β complex. Biophysical and biochemical assays revealed that, in contrast to its tight interaction with GlyR β, gephyrin only loosely interacts with GABA(A)R α2, whereas it has an intermediate affinity for the GABA(A)R α1 and α3 subunits. Despite the wide variation in affinities and the low overall sequence homology among the identified receptor subunits, competition assays confirmed the receptor-gephyrin interaction to be a mutually exclusive process. Selected gephyrin point mutants that critically weaken complex formation with GlyR β also abolished the GABA(A)R α1 and α3 interactions. Additionally, we identified a common binding motif with two conserved aromatic residues that are central for gephyrin binding. Consistent with the biochemical data, mutations of the corresponding residues within the cytoplasmic domain of α2 subunit-containing GABA(A)Rs attenuated clustering of these receptors at postsynaptic sites in hippocampal neurons. Taken together, our experiments provide key insights regarding similarities and differences in the complex formation between gephyrin and GABA(A)Rs compared with GlyRs and, hence, the accumulation of these receptors at postsynaptic sites.  相似文献   

12.
Ethanol exposure produces alterations in GABA(A) receptor function and expression associated with CNS hyperexcitability, but the mechanisms of these effects are unknown. Ethanol is known to increase both GABA(A) receptor α4 subunits and protein kinase C (PKC) isozymes in vivo and in vitro. Here, we investigated ethanol regulation of GABA(A) receptor α4 subunit expression in cultured cortical neurons to delineate the role of PKC. Cultured neurons were prepared from rat pups on postnatal day 0-1 and tested after 18?days. GABA(A) receptor α4 subunit surface expression was assessed using P2 fractionation and surface biotinylation following ethanol exposure for 4?h. Miniature inhibitory post-synaptic currents were measured using whole cell patch clamp recordings. Ethanol increased GABA(A) receptor α4 subunit expression in both the P2 and biotinylated fractions, while reducing the decay time constant in miniature inhibitory post-synaptic currents, with no effect on γ2 or δ subunits. PKC activation mimicked ethanol effects, while the PKC inhibitor calphostin C prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression. PKCγ siRNA knockdown prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression, but inhibition of the PKCβ isoform with PKCβ pseudosubstrate had no effect. We conclude that PKCγ regulates ethanol-induced alterations in α4-containing GABA(A) receptors.  相似文献   

13.
14.
Gene association studies in humans have linked the α5 subunit gene CHRNA5 to an increased risk for nicotine dependence. In the CNS, nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit are expressed at relatively high levels in the habenulo-interpeduncular system. Recent experimental evidence furthermore suggests that α5-containing receptors in the habenula play a key role in controlling the intake of nicotine in rodents. We have now analysed the subunit composition of hetero-oligomeric nAChRs in the habenula of postnatal day 18 (P18) C57Bl/6J control mice and of mice with deletions of the α5, the β2, or the β4 subunit genes. Receptors consisting of α3β4* clearly outnumbered α4β2*-containing receptors not only in P18 but also in adult mice. We found low levels of α5-containing receptors in both mice (6%) and rats (2.5% of overall nAChRs). Observations in β2 and β4 null mice indicate that although α5 requires the presence of the β4 subunit for assembling (but not of β2), α5 in wild-type mice assembles into receptors that also contain the subunits α3, β2, and β4.  相似文献   

15.
The prevalence of asthma has taken on pandemic proportions. Since this disease predisposes patients to severe acute airway constriction, novel mechanisms capable of promoting airway smooth muscle relaxation would be clinically valuable. We have recently demonstrated that activation of endogenous airway smooth muscle GABA(A) receptors potentiates β-adrenoceptor-mediated relaxation, and molecular analysis of airway smooth muscle reveals that the α-subunit component of these GABA(A) receptors is limited to the α(4)- and α(5)-subunits. We questioned whether ligands with selective affinity for these GABA(A) receptors could promote relaxation of airway smooth muscle. RT-PCR analysis of GABA(A) receptor subunits was performed on RNA isolated by laser capture microdissection from human and guinea pig airway smooth muscle. Membrane potential and chloride-mediated current were measured in response to GABA(A) subunit-selective agonists in cultured human airway smooth muscle cells. Functional relaxation of precontracted guinea pig tracheal rings was assessed in the absence and presence of the α(4)-subunit-selective GABA(A) receptor agonists: gaboxadol, taurine, and a novel 8-methoxy imidazobenzodiazepine (CM-D-45). Only messenger RNA encoding the α(4)- and α(5)-GABA(A) receptor subunits was identified in RNA isolated by laser capture dissection from guinea pig and human airway smooth muscle tissues. Activation of airway smooth muscle GABA(A) receptors with agonists selective for these subunits resulted in appropriate membrane potential changes and chloride currents and promoted relaxation of airway smooth muscle. In conclusion, selective subunit targeting of endogenous airway smooth muscle-specific GABA(A) receptors may represent a novel therapeutic option for patients in severe bronchospasm.  相似文献   

16.
Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.  相似文献   

17.
The γ-aminobutyric acid type A receptor (GABA(A)R) is a target for general anesthetics of diverse chemical structures, which act as positive allosteric modulators at clinical doses. Previously, in a heterogeneous mixture of GABA(A)Rs purified from bovine brain, [3H]azietomidate photolabeling of αMet-236 and βMet-286 in the αM1 and βM3 transmembrane helices identified an etomidate binding site in the GABA(A)R transmembrane domain at the interface between the β and α subunits [Li, G. D., et.al. (2006) J. Neurosci. 26, 11599-11605]. To further define GABA(A)R etomidate binding sites, we now use [3H]TDBzl-etomidate, an aryl diazirine with broader amino acid side chain reactivity than azietomidate, to photolabel purified human FLAG-α1β3 GABA(A)Rs and more extensively identify photolabeled GABA(A)R amino acids. [3H]TDBzl-etomidate photolabeled in an etomidate-inhibitable manner β3Val-290, in the β3M3 transmembrane helix, as well as α1Met-236 in α1M1, a residue photolabeled by [3H]azietomidate, while no photolabeling of amino acids in the αM2 and βM2 helices that also border the etomidate binding site was detected. The location of these photolabeled amino acids in GABA(A)R homology models derived from the recently determined structures of prokaryote (GLIC) or invertebrate (GluCl) homologues and the results of computational docking studies predict the orientation of [3H]TDBzl-etomidate bound in that site and the other amino acids contributing to this GABA(A)R intersubunit etomidate binding site. Etomidate-inhibitable photolabeling of β3Met-227 in βM1 by [3H]TDBzl-etomidate and [3H]azietomidate also provides evidence of a homologous etomidate binding site at the β3-β3 subunit interface in the α1β3 GABA(A)R.  相似文献   

18.
Interactions between neurosteroids and GABA receptors have attracted particular attention in the supraoptic nucleus (SON). Although GABA(A) receptors (GABA(A)R) mediate a sustained tonic inhibitory current (I(tonic)), as well as conventional phasic inhibitory postsynaptic currents (IPSCs, I(phasic)) in the SON, whether the steroid modulation on I(tonic) is present in SON magnocelluar neurosecretory cells (MNCs) is unknown. Here, we addressed this question and gained insights into the potential molecular configuration of GABA(A) receptors mediating I(tonic) and conferring its neurosteroids sensitivity in SON MNCs. 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) (1 μM), a relatively selective extrasynaptic GABA(A)R agonist, facilitated I(tonic) without affecting the main characteristics of IPSCs, while DS-2, a relatively selective modulator of GABA(A)R δ-subunits, caused minimal changes in I(tonic) of SON MNCs. l-655,708, a relatively selective GABA(A)R α(5)-subunit inverse agonist, blocked ~35% of the total I(tonic) both under basal and elevated ambient GABA concentration (3 μM). Facilitation of I(tonic) by benzodiazepines further supported the role of GABA(A)R γ(2)-subunit in I(tonic) of SON MNCs. Quantitative RT-PCR analysis showed much lesser expression of GABA(A)R δ-subunit than the α(5) or γ(2)-subunit in the SON. Allopregnanolone and 3α,5α-tetrahydrodeoxycorticosterone increased both I(tonic) and I(phasic) in SON MNCs, respectively, although more than 90% of the current increase was mediated by I(tonic) during the neurosteroid facilitation. Finally, l-655,708 attenuated the neurosteroid facilitation of I(tonic) but not of I(phasic). Altogether, our results suggest that I(tonic), mediated mainly by benzodiazepine-sensitive GABA(A)Rs containing α(5)-, β-, and γ(2)-, and to a lesser extent, δ-subunits, is a potential target of neurosteroid modulation in SON neurons.  相似文献   

19.
GABAA receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are the targets of many clinically important drugs, which modulate GABA induced chloride flux by interacting with separate and distinct allosteric binding sites. Recently, we described an allosteric modulation occurring upon binding of pyrazoloquinolinones to a novel binding site at the extracellular α+ β? interface. Here, we investigated the effect of 4-(8-methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile (the pyrazoloquinolinone LAU 177) at several αβ, αβγ and αβδ receptor subtypes. LAU 177 enhanced GABA-induced currents at all receptors investigated, and the extent of modulation depended on the type of α and β subunits present within the receptors. Whereas the presence of a γ2 subunit within αβγ2 receptors did not dramatically change LAU 177 induced modulation of GABA currents compared to αβ receptors, we observed an unexpected threefold increase in modulatory efficacy of this compound at α1β2,3δ receptors. Steric hindrance experiments as well as inhibition by the functional α+ β? site antagonist LAU 157 indicated that the effects of LAU 177 at all receptors investigated were mediated via the α+ β? interface. The stronger enhancement of GABA-induced currents by LAU 177 at α1β3δ receptors was not observed at α4,6β3δ receptors. Other experiments indicated that this enhancement of modulatory efficacy at α1β3δ receptors was not observed with another α+ β? modulator, and that the efficacy of modulation by α+ β? ligands is influenced by all subunits present in the receptor complex and by structural details of the respective ligand.  相似文献   

20.
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号