首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(3):163-170
The etiology of diabetic neuropathy is multifactorial and not fully elucidated, although oxidative stress and mitochondrial dysfunction are major factors. We reported previously that complement-inactivated sera from type 2 diabetic patients with neuropathy induce apoptosis in cultured neuronal cells, possibly through an autoimmune immunoglobulin-mediated pathway. Recent evidence supports an emerging role for autophagy in a variety of diseases. Here we report that exposure of human neuroblastoma SH-SY5Y cells to sera from type 2 diabetic patients with neuropathy is associated with increased levels of autophagosomes that is likely mediated by increased titers of IgM or IgG autoimmune immunoglobulins. The increased presence of macroautophagic vesicles was monitored using a specific immunohistochemical marker for autophagosomes, anti-LC3-II immunoreactivity, as well as the immunohistochemical signal for beclin-1, and was associated with increased co-localization with mitochondria in the cells exposed to diabetic neuropathic sera. We also report that dorsal root ganglia removed from streptozotocin-induced diabetic rats exhibit increased levels of autophagosomes and co-localization with mitochondria in neuronal soma, concurrent with enhanced binding of IgG and IgM autoimmune immunoglobulins. To our knowledge, this is the first evidence that the presence of autophagosomes is increased by a serum factor, likely autoantibody(ies) in a pathological condition. Stimulation of autophagy by an autoantibody-mediated pathway can provide a critical link between the immune system and the loss of function and eventual demise of neuronal tissue in type 2 diabetes.  相似文献   

2.
Burkholderia pseudomallei is the causative agent of melioidosis, a tropical infection of humans and other animals. The bacterium is an intracellular pathogen that can escape from endosomes into the host cytoplasm, where it replicates and infects adjacent cells. We investigated the role played by autophagy in the intracellular survival of B. pseudomallei in phagocytic and non-phagocytic cell lines. Autophagy was induced in response to B. pseudomallei invasion of murine macrophage (RAW 264.7) cells and a proportion of the bacteria co-localized with the autophagy effector protein LC3, a marker for autophagosome formation. Pharmacological stimulation of autophagy in RAW 264.7 and murine embryonic fibroblast (MEF) cell lines resulted in increased co-localization of B. pseudomallei with LC3 while basal levels of co-localization could be abrogated using inhibitors of the autophagic pathway. Furthermore, induction of autophagy decreased the intracellular survival of B. pseudomallei in these cell lines, but bacterial survival was not affected in MEF cell lines deficient in autophagy. Treatment of infected macrophages with chloramphenicol increased the proportion of bacteria within autophagosomes indicating that autophagic evasion is an active process relying on bacterial protein synthesis. Consistent with this hypothesis, we identified a B. pseudomallei type III secreted protein, BopA, which plays a role in mediating bacterial evasion of autophagy. We conclude that the autophagic pathway is a component of the innate defense system against invading B. pseudomallei, but which the bacteria can actively evade. However, when autophagy is pharmacologically induced using rapamycin, bacteria are actively sequestered in autophagosomes, ultimately decreasing their survival.  相似文献   

3.
Xu Y  Liu XD  Gong X  Eissa NT 《Autophagy》2008,4(1):110-112
Autophagy has recently been shown to be an important component of the innate immune response. The signaling pathways leading to activation of autophagy in innate immunity are not well studied. Our recent study shows that Toll-like receptor 4 (TLR 4) serves as an environmental sensor for autophagy. We define a new molecular pathway in which lipopolysaccharide (LPS) induces autophagy in human and murine macrophages by a pathway regulated through Toll-interleukin 1 receptor domain-containing adaptor-inducing interferon-beta (TRIF)-dependent, myeloid differentiation factor 88 (MyD88)-independent TLR4 signaling. Receptor-interacting protein (RIP1) and p38 mitogen-activated protein-kinase (MAPK) are downstream components of this pathway. This signaling pathway does not affect cell viability, indicating that it is distinct from an autophagic death signaling pathway. We further show that LPS-induced autophagy can enhance mycobacterial co-localization with the autophagosomes. The above study raises important questions. (1) What is the complete signaling pathway for LPS-induced autophagy? (2) Does TLR3 mediate autophagy? (3) What are the mechanisms that determine whether autophagy acts as a pro-death or pro-survival pathway? (4) What are the physiological functions of LPS-induced autophagosomes? Future studies examining the above questions should provide us with important clues as to how autophagy is regulated in innate immunity, and how autophagy can be utilized in pathogen clearance.  相似文献   

4.
《Autophagy》2013,9(6):744-753
Burkholderia pseudomallei is the causative agent of melioidosis, a tropical infection of humans and other animals. The bacterium is an intracellular pathogen that can escape from endosomes into the host cytoplasm, where it replicates and infects adjacent cells. We investigated the role played by autophagy in the intracellular survival of B. pseudomallei in phagocytic and non-phagocytic cell lines. Autophagy was induced in response to B. pseudomallei invasion of murine macrophage (RAW 264.7) cells and a proportion of the bacteria co-localized with the autophagy effector protein LC3, a marker for autophagosome formation. Pharmacological stimulation of autophagy in RAW 264.7 and murine embryonic fibroblast (MEF) cell lines resulted in increased co-localization of B. pseudomallei with LC3 while basal levels of co-localization could be abrogated using inhibitors of the autophagic pathway. Furthermore, induction of autophagy decreased the intracellular survival of B. pseudomallei in these cell lines, but bacterial survival was not affected in MEF cell lines deficient in autophagy. Treatment of infected macrophages with chloramphenicol increased the proportion of bacteria within autophagosomes indicating that autophagic evasion is an active process relying on bacterial protein synthesis. Consistent with this hypothesis, we identified a B. pseudomallei type III secreted protein, BopA, which plays a role in mediating bacterial evasion of autophagy. We conclude that the autophagic pathway is a component of the innate defense system against invading B. pseudomallei, but which the bacteria can actively evade. However, when autophagy is pharmacologically induced using rapamycin, bacteria are actively sequestered in autophagosomes, ultimately decreasing their survival.  相似文献   

5.
Activation of membrane death receptors has been connected to apoptosis and, recently, other non-apoptotic events. For example, we reported recently that sera from either a subset of patients with type 2 diabetes with neuropathy or a subpopulation of patients with neurogenic chronic intestinal pseudo-obstruction (CIP) stimulate autophagy in SH-SY5Y human neuroblastoma cells via complement-independent, autoantibody-mediated activation of Fas (CD95). Activation of the Fas pathway causes minimal activation of apoptosis in these cells since procaspase-8 shows low constitutive levels of expression in neuroblastoma cells. The observation that anti-Fas autoantibodies induce autophagy is novel and provocative. This finding has implications regarding the pathophysiology of diabetic neuropathy, CIP and, perhaps, other autoimmune disorders. For example, recent reports suggest that expression or activity of proapoptotic caspases can be enhanced by activation of more than one membrane death receptor, as could happen by combinations of cytokines and autoantibodies. The observation that autophagy, a putative cytoprotective pathway that has also been implicated in non-apoptotic cell death, is activated by autoantibodies against Fas, may represent an early cellular protective response. An increase in cytotoxic cytokine levels or the ratio of agonist:antagonist autoantibodies may "tip" the balance of the cellular response to activation of programmed cell death pathways.  相似文献   

6.
L-Periaxin is a PDZ-domain protein localized to the plasma membrane of myelinating Schwann cells and plays a key role in the stabilization of mature myelin in peripheral nerves. Mutations in L-periaxin have recently been described in some patients with demyelinating peripheral neuropathy, suggesting that disruption of L-periaxin function may result in nerve injury. In this study, we report the presence of autoantibodies to L-periaxin in sera from two of 12 patients with diabetes mellitus (type 2)-associated neuropathy and three of 17 patients with IgG monoclonal gammopathy of undetermined significance (MGUS) neuropathy, an autoimmune peripheral nerve disorder. By comparison, anti-L-periaxin antibodies were not present in sera from nine patients with IgM MGUS neuropathy or in sera from 10 healthy control subjects. The effect of anti-L-periaxin serum antibody on peripheral nerve function was tested in vivo by intraneural injection. Sera containing anti-L-periaxin antibody, but not sera from age-matched control subjects, injected into the endoneurium of rat sciatic nerve significantly (p < 0.005, n = 3) attenuated sensory-evoked compound muscle action potential (CMAP) amplitudes in the absence of temporal dispersion. In contrast, motor-evoked CMAP amplitudes and latencies were not affected by intraneural injection of sera containing anti-L-periaxin antibody. Light and electron microscopy of anti-L-periaxin serum-injected nerves showed morphologic evidence of demyelination and axon enlargement. Depleting sera of anti-L-periaxin antibodies neutralized the serum-mediated effects on nerve function and nerve morphology. Together, these data support anti-L-periaxin antibody as the pathologic agent in these serum samples. We suggest that anti-L-periaxin antibodies, when present in sera of patients with IgG MGUS- or diabetes-associated peripheral neuropathy, may elicit sensory nerve conduction deficits.  相似文献   

7.

Background

Interactions of resident bacteria and/or their producing lipopolysaccharide (LPS) with sulcular epithelial keratinocytes may be regulated by autophagy in the gingival sulcus. In this study, we investigated an induction of bacterial autophagy in exfoliative sulcular keratinocytes of the gingival sulcus and cultured keratinocytes treated with Porphyromonas gingivalis-originated LPS (PgLPS).

Results

Exfoliative sulcular keratinocytes showed an induction of autophagy, in addition to increased expression of LPS-mediated factors including lipopolysaccharide-binding protein and toll-like receptors (TLRs), leading to co-localization of bacteria with autophagosomes. In contrast, exfoliative keratinocytes from the free gingiva did not show similar autophagy. Autophagy activity in human cultured keratinocyte cells (HaCaT) was induced by PgLPS, which was dependent partially on the AMP-activated protein kinase (AMPK) pathway via increased intracellular reactive oxygen species (ROS) and was in association with an activation of TLR4 signaling. After incubation of cultured keratinocytes with E.coli BioParticles following PgLPS stimulation, co-localization of bioparticles with autophagosomes was enhanced. Conversely, blockage of autophagy with 3-methyladenin and LPS-binding with polymyxin B led to significant reduction of co-localization of particles with autophagosomes.

Conclusion

These findings indicate that PgLPS-induced autophagy is at least partially responsible for interaction between bacteria and sulcular keratinocytes in the gingival sulcus.
  相似文献   

8.
Kaempferol, a natural flavonoid, has the beneficial effects of preserving pancreatic β-cell mass and function, but its action on β-cell lipid metabolism still remains elusive. Recently, autophagy has been reported to play a major role in lipid metabolism in various cell types, but its role in pancreatic β-cell's lipid metabolism is rarely reported. Here, we investigated the role of kaempferol-induced autophagy in inhibition of lipid stores, ER stress and β-cell dysfunction in palmitic acid-challenged RIN-5F cells and isolated pancreatic islets. The lipid-lowering effect of kaempferol was determined by Oil Red O staining, triglyceride assay, BODIPY labeling, RT-PCR and immunoblot analysis of PLIN2 (the lipid droplet coat protein) expression. Further, the involvement of AMPK/mTOR-mediated lipophagy was established by pharmacological and genetic inhibitors of autophagy and AMPK. The co-localization studies of lipid droplets with autophagosomes/lysosomes by BODIPY-MDC-LysoTracker co-staining, LC3/BODIPY labeling and LC3/PLIN2 double immunolabeling further strengthened the findings. Kaempferol treatment exhibited decreased lipid stores and increased co-localization of lipid droplets with autophagosomes and lysosomes in palmitic acid–challenged β-cells. Moreover, inhibition of autophagy led to decreased co-localization and increased lipid droplets accumulation. Kaempferol-induced alleviation of ER stress and β-cell dysfunctions was established by immunoblot analysis of CHOP-10 (a key mediator of cell death in response to ER stress) and insulin content/secretion analysis respectively. Together, these findings suggest that kaempferol prevents ectopic lipid accumulation and ER stress, thus restoring β-cell function through AMPK-mediated lipophagy. The current data implies that kaempferol may be a potential therapeutic candidate to prevent obesity-linked diabetic complications.  相似文献   

9.
《Autophagy》2013,9(6):702-710
Disruption of autophagy—a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes—can cause neurodegeneration in tissue culture and in vivo. Up-regulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which up-regulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically-privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate, and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic up-regulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially-therapeutic neuronal response.  相似文献   

10.
Sera of patients suffering from rheumatic diseases and myocarditis were examined on the sections of human and bovine myocardial tissue by indirect immunofluorescence with the use of pure IgG antibodies or monospecific sera against IgG, IgA and IgM. It was shown that antibodies reacting with different myofibers and interstitial connective tissue of the heart belong to the main immunoglobulin classes (IgG, IgA and IgM). There was a significant predominance of IgG antibodies as shown by the frequency of their detection and by the titer height. The predominance of antibodies to certain classes of immunoglobulins did not correlate with a specific disease entity. The frequency of detecting antibodies to a certain immunoglobulin class was in good agreement with the time of the disease onset. Moreover, the frequency of positive reactions due to IgG, IgA, and IgM antibodies correlated with the level of the appropriate immunoglobulins in the test sera.  相似文献   

11.
Disruption of autophagy—a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes—can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response.Key words: autophagy, fasting, Purkinje cells, cortical neurons, confocal microscopy, electron microscopy, neuroprotection, starvation, CNS, cortex  相似文献   

12.
Cross-reactivity of monospecific antisera to human immunoglobulins with animal sera of 10 species was studied by immunoelectrophoresis and radial immunodiffusion. Antisera to IgG were shown to reveal IgG of all the species studied, antisera to IgM and especially to IgA cross reacted less extensively. The greatest number of cross reactions were given by the antisera obtained as a result of hyperimmunization. Hyperimmune monospecific antisera to human IgG, IgA, and IgM can be used for the identification of animal immunoglobulins during their isolation from the sera and for their quantitation by radial immunodiffusion.  相似文献   

13.
《Autophagy》2013,9(3):260-265
In recent years, the process of selective autophagy has received much attention with respect to the clearance of protein aggregates, damaged mitochondria, and bacteria. However, until recently, there have been virtually no studies on the selective autophagy of viruses, although they are perhaps one of the most ubiquitous unwanted constituents in human cells. Recently, we have shown that the ability of neuronal Atg5 to protect against lethal Sindbis virus central nervous system (CNS) infection in mice is associated with impaired viral capsid clearance, increased p62 accumulation, and increased neuronal cell death. In vitro, we showed that p62 interacts with the Sindbis capsid protein and targets it for degradation in autophagosomes. Herein, we review these findings and broadly speculate about potential roles of selective viral autophagy in the regulation of host immunity and viral pathogenesis.  相似文献   

14.
《Autophagy》2013,9(4):449-454
Autophagy is a cellular stress response that results in the activation of a lysosomal degradation pathway. In this report, we showed that cationic lipids, a common-used class of transfection reagents, induced genuine autophagy in mammalian cells. Extensive LC3 dot formation was observed by treatment with cationic lipids (with or without DNA), but not neutral lipids, in a HeLa cell line stably expressing GFP-LC3 (HeLa-LC3). Further proofs for autophagy were obtained by the co-localization of the LC3 dots with lysosome-specific staining patterns, observation of LC3-I to LC3-II form conversion and appearance of autophagic vacuoles under TEM. The autophagic flux assay with bafilomycin A1 and degradation of p62/SQSTM1 suggested that the autophagy induced by cationic lipids was primarily due to increased formation of autophagosomes and not decreased turnover. Moreover, cationic lipids induced autophagy in an mTOR-independent manner.  相似文献   

15.
Sumpter R  Levine B 《Autophagy》2011,7(3):260-265
In recent years, the process of selective autophagy has received much attention with respect to the clearance of protein aggregates, damaged mitochondria and bacteria. However, until recently, there have been virtually no studies on the selective autophagy of viruses, although they are perhaps one of the most ubiquitous unwanted constituents in human cells. Recently, we have shown that the ability of neuronal Atg5 to protect against lethal Sindbis virus central nervous system (CNS) infection in mice is associated with impaired viral capsid clearance, increased p62 accumulation and increased neuronal cell death. In vitro, we showed that p62 interacts with the Sindbis capsid protein and targets it for degradation in autophagosomes. Herein, we review these findings and broadly speculate about potential roles of selective viral autophagy in the regulation of host immunity and viral pathogenesis.  相似文献   

16.
Autophagy is a lysosomal degradative process that is closely related to the pathogenesis of vascular calcification. Recent evidence suggests that periostin (POSTN) is a unique extracellular matrix protein that is associated with diabetic vascular complications. The aim of current study is to investigate the role of POSTN in diabetic vascular calcification and the underlying mechanisms. Results showed that POSTN was highly upregulated in both calcified arteries of diabetic rats and AGEs-BSA mediated vascular smooth muscle cell (VSMC) calcification. POSTN blocked autophagic flux during the diabetic calcification process, as evidenced by increased protein expression of Beclin1, LC3-II, and P62, as well as the co-localization of LC3-II and LAMP1. Inhibition of POSTN alleviated AGEs-BSA-induced autophagic flux blockade, thereby attenuating AGEs-BSA-induced VSMC calcification. Mechanistically, the upregulation of POSTN impaired the fusion of autophagosomes and lysosome and resulted in the autophagic flux blockade in AGEs-BSA-treated VSMC. Furthermore, this autophagic blockade was intracellular ROS-dependent. In summary, this study uncovered a novel mechanism of POSTN in autophagy regulation of diabetic vascular calcification.  相似文献   

17.
《Autophagy》2013,9(12):1782-1797
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease characterized by a progressive age-dependent extracellular accumulation of transforming growth factor β-induced protein (TGFBI). Corneal fibroblasts from GCD2 patients also have progressive degenerative features, but the mechanism underlying this degeneration remains unknown. Here we observed that TGFBI was degraded by autophagy, but not by the ubiquitin/proteasome-dependent pathway. We also found that GCD2 homozygous corneal fibroblasts displayed a greater number of fragmented mitochondria. Most notably, mutant TGFBI (mut-TGFBI) extensively colocalized with microtubule-associated protein 1 light chain 3β (MAP1LC3B, hereafter referred to as LC3)-enriched cytosolic vesicles and CTSD in primary cultured GCD2 corneal fibroblasts. Levels of LC3-II, a marker of autophagy activation, were significantly increased in GCD2 corneal fibroblasts. Nevertheless, levels of SQSTM1/p62 and of polyubiquitinated protein were also significantly increased in GCD2 corneal fibroblasts compared with wild-type (WT) cells. However, LC3-II levels did not differ significantly between WT and GCD2 cells, as assessed by the presence of bafilomycin A1, the fusion blocker of autophagosomes and lysosomes. Likewise, bafilomycin A1 caused a similar change in levels of SQSTM1. Thus, the increase in autophagosomes containing mut-TGFBI may be due to inefficient fusion between autophagosomes and lysosomes. Rapamycin, an autophagy activator, decreased mut-TGFBI, whereas inhibition of autophagy increased active caspase-3, poly (ADP-ribose) polymerase 1 (PARP1) and reduced the viability of GCD2 corneal fibroblasts compared with WT controls. These data suggest that defective autophagy may play a critical role in the pathogenesis of GCD2.  相似文献   

18.
Parkinson disease is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. α-Synuclein accumulation in turn leads to compensatory effects that may include the up-regulation of autophagy. Another common feature of Parkinson disease (PD) is mitochondrial dysfunction. Here, we provide evidence that the overactivation of autophagy may be a link that connects the intracellular accumulation of α-synuclein with mitochondrial dysfunction. We found that the activation of macroautophagy in primary cortical neurons that overexpress mutant A53T α-synuclein leads to massive mitochondrial destruction and loss, which is associated with a bioenergetic deficit and neuronal degeneration. No mitochondrial removal or net loss was observed when we suppressed the targeting of mitochondria to autophagosomes by silencing Parkin, overexpressing wild-type Mitofusin 2 and dominant negative Dynamin-related protein 1 or blocking autophagy by silencing autophagy-related genes. The inhibition of targeting mitochondria to autophagosomes or autophagy was also partially protective against mutant A53T α-synuclein-induced neuronal cell death. These data suggest that overactivated mitochondrial removal could be one of the contributing factors that leads to the mitochondrial loss observed in PD models.  相似文献   

19.
HspB8, a small heat-shock protein implicated in autophagy, is mutated in patients with distal hereditary motor neuropathy type II (dHMNII). Autophagy is essential for maintaining protein homeostasis in the central nervous system, but its role has not been investigated in peripheral motor neurons. We used a novel, multispectral-imaging flow cytometry assay to measure autophagy in cells. This assay revealed that over-expression of wild-type HspB8 in motor neuron-like NSC34 cells led to an increased co-localisation of autophagosomes with the lysosomes. By contrast, over-expression of mutant HspB8 resulted in autophagosomes that co-localised with protein aggregates but failed to co-localise with the lysosomes. A similar impairment of autophagy could also be demonstrated in peripheral blood mononuclear cells from two dHMNII patients with the HspB8(K141E) mutation. We conclude that defects in HspB8-mediated autophagy are likely to contribute to dHMNII pathology and their detection in peripheral blood mononuclear cells could be a useful, accessible biomarker for the disease.  相似文献   

20.
Children with croup appearing in the presence of acute viral respiratory diseases (AVRD) show an increase in the IgM content in their blood sera during the first days of the disease followed by a decrease, and an increase in the IgG and IgE levels during the convalescence period. No essential shifts in the content of IgA have been observed. The total content of the immunoglobulins in children with croup, was lowered as compared to that in AVPD patients having no croup which is, probably, of a certain pathogenic importance. The increased content of IgE revealed in the blood sera of children with croup indicates the presence of an allergic component in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号