首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Folate is an essential cofactor for normal cellular proliferation and tissue regeneration. Alcohol-associated folate deficiency is common, primarily due to intestinal malabsorption, the mechanism of which needs attention. The aim of the present study was to evaluate the regulatory events of folate transport in experimental alcohol ingestion. For this, male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and folate transport was studied in isolated intestinal epithelial cells across the crypt-villus axis. The role of different signaling pathways in folate transport regulation was evaluated independently to that of reduced folate carrier (RFC) expression. The results showed that differentiated cells of villus possess high folate uptake activity as compared to mid villus and crypt base cells. During chronic ethanol ingestion, decrease in transport was observed all along the crypt-villus axis but was more pronounced at proliferating crypt base stem cells. Studying the effect of modulators of signaling pathways revealed the folate transport system to be under the regulation of cAMP-dependent protein kinase A (PKA), the activity of which was observed to decrease upon alcohol ingestion. In addition, protein kinase C might have a role in folate transport regulation during alcoholic conditions. The deregulation in the folate transport system was associated with a decrease in RFC expression, which may result in lower transport efficiency observed at absorptive surface in alcohol-fed rats. The study highlights the role that perturbed regulatory pathways and RFC expression play in the decreased folate transport at brush border surface during alcohol ingestion.  相似文献   

2.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) (0.1 nM) down-modulates its receptor in IL-3/GM-CSF dependent M-07e cells, in KG-1 cells and normal granulocytes, whereas phorbol esters 12-O-tetradecanoylphorbol-13-acetate (TPA) (2 nM) down-modulates the GM-CSF receptor in M-07e cells and granulocytes but not in KG-1 cells. As data analysis shows by nonlinear regression, the decreased binding ability depends on a reduction of the binding sites with no significant change of their dissociation constant. To gain insight into the mechanisms involved in the GM-CSF receptor regulation, we investigated the role of protein kinase C (PKC). GM-CSF, unlike TPA, was unable to activate PKC in all the cells studied. Moreover, unlike TPA, GM-CSF was still able to down-modulate its receptor in cells where PKC was inhibited by 1-(5-isoquinolonesulphonyl)-2-methylpiperazine (H7) and staurosporine or in cells where PKC was exhausted by prolonged incubation with 1 microM TPA. Finally, the receptor re-expression rate was accelerated by protein kinases inhibitors. These results, taken together, indicate the presence of a PKC-dependent and -independent down-modulation mechanism and a negative role of the endogeneous protein kinases in GM-CSF receptor re-expression.  相似文献   

3.
4.

Backround

Cigarette smoke exposure including biologically active lipopolysaccharide (LPS) in the particulate phase of cigarette smoke induces activation of alveolar macrophages (AM) and alveolar epithelial cells leading to production of inflammatory mediators. This represents a crucial mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Respiratory pathogens are a major cause of exacerbations leading to recurrent cycles of injury and repair. The interaction between pathogen-associated molecular patterns and the host is mediated by pattern recognition receptors (PRR''s). In the present study we characterized the expression of Toll-like receptor (TLR)- 2, TLR4 and CD14 on human AM compared to autologous monocytes obtained from patients with COPD, healthy smokers and non-smokers.

Methods

The study population consisted of 14 COPD patients without evidence for acute exacerbation, 10 healthy smokers and 17 healthy non-smokers stratified according to age. The expression of TLR2, TLR4 and CD14 surface molecules on human AM compared to autologous monocytes was assessed ex vivo using FACS analysis. In situ hybridization was performed on bronchoalveolar lavage (BAL) cells by application of the new developed HOPE-fixative.

Results

The expression of TLR2, TLR4 and CD14 on AM from COPD patients, smokers and non-smokers was reduced as compared to autologous monocytes. Comparing AM we detected a reduced expression of TLR2 in COPD patients and smokers. In addition TLR2 mRNA and protein expression was increased after LPS stimulation on non-smokers AM in contrast to smokers and COPD patients.

Conclusion

Our data suggest a smoke related change in the phenotype of AM''s and the cellular response to microbial stimulation which may be associated with impairment of host defenses in the lower respiratory tract.  相似文献   

5.

Background

Low endogenous testosterone levels have been shown to be a risk factor for the development of cardiovascular disease and cardiovascular benefits associated with testosterone replacement therapy are being advocated; however, the effects of endogenous testosterone levels on acute coronary vasomotor responses to androgen administration are not clear. The objective of this study was to compare the effects of acute androgen administration on in vivo coronary conductance and in vitro coronary microvascular diameter in intact and castrated male swine.

Methods

Pigs received intracoronary infusions of physiologic levels (1?C100 nM) of testosterone, the metabolite 5??-dihydrotestosterone, and the epimer epitestosterone while left anterior descending coronary blood flow and mean arterial pressure were continuously monitored. Following sacrifice, coronary arterioles were isolated, cannulated, and exposed to physiologic concentrations (1?C100 nM) of testosterone, 5??-dihydrotestosterone, and epitestosterone. To evaluate effects of the androgen receptor on acute androgen dilation responses, real-time PCR and immunohistochemistry for androgen receptor were performed on conduit and resistance coronary vessels.

Results

In vivo, testosterone and 5??-dihydrotestosterone produced greater increases in coronary conductance in the intact compared to the castrated males. In vitro, percent maximal dilation of microvessels was similar between intact and castrated males for testosterone and 5??-dihydrotestosterone. In both studies epitestosterone produced significant increases in conductance and microvessel diameter from baseline in the intact males. Androgen receptor mRNA expression and immunohistochemical staining were similar in intact and castrated males.

Conclusions

Acute coronary vascular responses to exogenous androgen administration are increased by endogenous testosterone, an effect unrelated to changes in androgen receptor expression.  相似文献   

6.
7.
Previously, we have demonstrated that the butyrate-induced differentiation in the human colon cancer cell line Caco-2 occurs via upregulation of the vitamin D receptor (VDR). However, the downstream pathways involved are unknown. The mitogen-activated protein kinases (MAPKs) have been shown to play an important role in regulation of cell differentiation, and may therefore be a potential target of butyrate action. To assess their role in butyrate-mediated cell differentiation and VDR expression, we used the specific p38-MAPK inhibitor SB203580 and the ERK1/2 MAPK-inhibitor PD98059. The p38-MAPK inhibitor abolished the butyrate effect on VDR expression and cell differentiation, while the ERK1/2 inhibitor did not influence the butyrate-mediated induction of cell differentiation and VDR expression. The essential role of the p38 pathway in up-regulation of VDR expression was further confirmed by using the p38 stimulator arsenite. These results imply an important role of the p38-MAPK in regulation of cellular differentiation through upregulation of VDR expression by butyrate.  相似文献   

8.
9.

Background

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation.

Methods

Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts.

Results

We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells.

Conclusions

CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD.  相似文献   

10.
11.
Polyamines are essential to the migration ofepithelial cells in the intestinal mucosa. Cells depleted of polyaminesdo not attach as rapidly to the extracellular matrix and do not form the actin stress fibers essential for migration. Because both attachment and stress fiber formation depend on integrin signaling andthe formation of focal adhesions, we examined these and related processes in polyamine-depleted IEC-6 cells. There was general decreased tyrosine phosphorylation of focal adhesion kinase (FAK), and,specifically, decreased phosphorylation of Tyr-925, the paxillin binding site. In control cells, FAK phosphorylation was rapid afterattachment to the extracellular matrix, while attached cells depletedof polyamines had significantly delayed phosphorylation. FAK activitywas also significantly inhibited in polyamine-depleted cells as was thephosphorylation of paxillin. Polyamine-depleted cells failed to spreadnormally after attachment, and immunocytochemistry showed littlecolocalization of FAK and actin compared with controls. Focal adhesioncomplex formation was greatly reduced in the absence of polyamines.These data suggest that defective integrin signaling may, at least inpart, account for the decreased rates of attachment, actin stress fiberformation, spreading, and migration observed in polyamine-depleted cells.

  相似文献   

12.
The inactivation of prostaglandin E2 (PGE2) was decreased in the pulmonary circulation of isolated rat lungs, when either dipyridamole or sulfinpyrazone was infused into the pulmonary artery at the concentration of 20 μM. After pulmonary injection of 7.1 nmoles of 14C-PGE2 the amount of 15-oxo-metabolites of PGE2 in the effluent was 3.91 ± 0.19 nmoles from control lungs and 2.05 ± 0.19 nmoles (2P < 0.001) in that from 20 μM dipyridamole treated lungs. The corresponding values for control and 20 μM sulfinpyrazone lungs were 4.11 ± 0.25 and 3.03 ± 0.14 nmoles (2P < 0.01), respectively. The amounts of unmetabolized PGE2 were correspondingly increased in the effluents from dipyridamole and sulfinpyrazone (20 μM) lungs. Neither dipyridamole nor sulfinpyrazone had at concentration of 2 μM any significant effect on the amount of 15-oxo-metabolites in the effluent, although the amount of unmetabolized PGE2 was slightly increased in 2 μM sulfinpyrazone experiments.  相似文献   

13.
The balance of phagocytic function among Kupffer cells, hepatic endothelial cells and splenic macrophages in the chronically ethanol-fed rats has been investigated. Clearance of latex particles in the blood was measured to estimate the function of the reticuloendothelial system. Phagocytosis of latex particles by Kupffer cells, hepatic endothelial cells or splenic macrophages in vivo was measured by counting the number of ingested particles in a cell after isolation of hepatic nonparenchymal cells or spleen cells following injection of different amounts of latex particles. Latex particle clearance was suppressed in the ethanol-fed rats, demonstrating a decreased phagocytic capacity of the reticuloendothelial system. Markedly decreased phagocytic function was found in 40% of Kupffer cells of the chronically ethanol-fed rats. In contrast, the number of latex particles in hepatic endothelial cells and in splenic macrophages was increased after injection of a triggering dose of latex particles. From these results it may be concluded that an increased phagocytosis of hepatic endothelial cells and splenic macrophages could compensate for the decreased phagocytic function of Kupffer cells.  相似文献   

14.
Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.  相似文献   

15.
Ascorbate, an intracellular antioxidant, has been considered critical for neuronal protection against oxidant stress, which is supported especially by in vitro studies. Besides, it has been demonstrated an age-related decrease in brain ascorbate levels. The aims of the present study were to investigate ascorbate uptake in hippocampal slices from old Wistar rats, as well as its neuroprotective effects in in vitro and in vivo assays. Hippocampal slices from male Wistar rats aged 4, 11 and 24 months were incubated with radiolabeled ascorbate and incorporated radioactivity was measured. Hippocampal slices from rats were incubated with different concentrations of ascorbate and submitted to H(2)O(2)-induced injury, cellular damage and S100B protein levels were evaluated. The effect of chronic administration of ascorbate on cellular oxidative state and astrocyte biochemical parameters in the hippocampus from 18-months-old Wistar rats was also studied. The ascorbate uptake was decreased in hippocampal slices from old-aged rats, while supplementation with ascorbate (2 weeks) did not modify any tested oxidative status in the hippocampus and the incubation was unable to protect hippocampal slices submitted to oxidative damage (H(2)O(2)) from old rats. Our data suggest that the decline of ascorbate uptake might be involved in the brain greater susceptibility to oxidative damage with advancing age and both in vitro and vivo assays suggest that ascorbate supplementation did not protect hippocampal cells.  相似文献   

16.
The GM-CSF receptor consists of a GM-CSF specific low affinity alpha-subunit (GMRalpha) and a beta-subunit (betac) that associates with GMRalpha in the presence of GM-CSF to form a high-affinity complex. A splice variant soluble isoform of GMRalpha (solalpha) consists of the extracellular domain of GMRalpha and a unique 16-amino acid C-terminal domain. Exogenously administered solalpha is unable to associate with betac on the cell surface either in the presence or absence of GM-CSF. However, paradoxically, co-expression of solalpha with betac results in the ligand-independent association of solalpha with betac on the cell surface via the C-terminal domain of solalpha. To study the interaction and functional characteristics of the solalpha-betac complex we engineered a soluble betac-subunit (ECDbeta) and expressed it alone and with solalpha. Co-expressed but not independent sources of solalpha and ECDbeta could be co-precipitated in the absence of ligand demonstrating the extracellular domain of betac was sufficient for association with solalpha upon co-expression. However, independent sources of solalpha could associate with ECDbeta in the presence of GM-CSF as could a C-terminal deficient solalpha mutant (ECDalpha) and the addition of ECDbeta to ECDalpha and GM-CSF was associated with a conversion from a low- to high-affinity ligand-receptor complex.  相似文献   

17.
Metabolism of arachidonic acid (AA) was studied in perfused lungs and kidneys of normal and atherosclerotic rabbits by determination of PGE2, PGF and the stable metabolites of PGI2 (6-keto-PGF) and TXA2 (TXB2). PGI2 was the main AA metabolite formed by normal lungs and kidneys. Atherosclerosis reduced the formation of PGI2 by about 50 % in both organs. TXA2 formation was similarily decreased in lungs. In kidneys, the decrease in PGI2 formation was accompanied by an increase in PGE2 formation.  相似文献   

18.
Chloramphenicol is an antibiotic that consistently suppresses the bone marrow and induces sideroblastic anemia. It is also a rare cause of aplastic anemia. These toxicities are thought to be related to mitochondrial dysfunction, since chloramphenicol inhibits mitochondrial protein synthesis. We hypothesized that chloramphenicol-induced mitochondrial impairment alters the synthesis of ferritin and the transferrin receptor. After treating K562 erythroleukemia cells with a therapeutic dose of chloramphenicol (10 µg/ml) for 4 days, there was a marked decrease in cell surface transferrin receptor expression and de novo ferritin synthesis associated with significant decreases in cytochrome c oxidase activity, ATP levels, respiratory activity, and cell growth. Decreases in the transferrin receptor and ferritin were associated with reduced and unchanged message levels, respectively. The mechanism by which mitochondrial dysfunction alters these important proteins in iron homeostasis is not clear. A global decrease in synthetic processes seems unlikely, since the expression of the cellular adhesion proteins VLA4 and CD58 was not significantly decreased by chloramphenicol, nor were the message levels of β-actin or ferritin. The alterations were not accompanied by changes in binding of the iron response protein (IRP) to the iron-responsive element (IRE), although cytosolic aconitase activity was reduced by 27% in chloramphenicol-treated cells. A disturbance in iron homeostasis due to alterations in the transferrin receptor and ferritin may explain the hypochromic-microcytic anemia and the accumulation of nonferritin iron in the mitochondria in some individuals after chloramphenicol therapy. Also, these studies provide evidence of a link between mitochondrial impairment and iron metabolism in K562 cells. J. Cell. Physiol. 180:334–344, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
Dube MG  Pu S  Kalra SP  Kalra PS 《Peptides》2000,21(6):793-801
Hypothalamic neuropeptides play critical roles in the regulation of feeding behavior and body weight (BW). Disruption of signaling in the ventromedial nucleus by microinjection of the neurotoxin, colchicine (COL), produces transient hyperphagia with corresponding BW gain lasting for 4 days. Because the melanocortin system exerts an inhibitory control on food intake, we hypothesized that hyperphagia in COL-treated rats is due to decreased melanocortin-induced restraint on feeding. Melanocortin restraint is exerted through alpha-melanocortin-stimulating hormone derived from proopiomelanocortin (POMC) and is antagonized by agouti-related peptide produced in neurons located in the arcuate nucleus (ARC). COL (4 microg/0.5 microl saline) or saline was microinjected bilaterally into the ventromedial nucleus of adult male rats. In conjunction with BW gain, blood leptin levels were elevated, whereas POMC mRNA in the ARC was significantly decreased in COL-injected rats. Levels of alpha-melanocortin-stimulating hormone were also decreased in the micropunched paraventricular nucleus, dorsomedial nucleus, and perifornical hypothalamus, sites implicated in the control of food intake. That diminution in melanocortin signaling underlies hyperphagia was supported by the observation that intracerebroventricular injection of the MC3/MC4 melanocortin receptor agonist, MTII, prevented the hyperphagia and BW gain. Surprisingly, however, mRNA levels of the orexigenic peptide agouti-related peptide in the ARC were decreased perhaps due to the action of elevated leptin. These results show that transient hyperphagia and BW gain induced by disruption of signaling in the ventromedial nucleus results from two neurochemical rearrangements: development of leptin resistance in POMC neurons and diminution in melanocortin signaling as reflected by decreased POMC gene expression in the ARC and decreased availability of alpha-melanocortin-stimulating hormone for release in feeding relevant sites.  相似文献   

20.
The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号