首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We have previously reported that, in venous myocytes, Gbetagamma scavengers inhibit angiotensin AT1A receptor-induced stimulation of L-type Ca2+ channels (1). Here, we demonstrate that intracellular infusion of purified Gbetagamma complexes stimulates the L-type Ca2+ channel current in a concentration-dependent manner. Additional intracellular dialysis of GDP-bound inactive Galphao or of a peptide corresponding to the Gbetagamma binding region of the beta-adrenergic receptor kinase completely inhibited the Gbetagamma-induced stimulation of Ca2+ channel currents. The gating properties of the channel were not affected by intracellular application of Gbetagamma, suggesting that Gbetagamma increased the whole-cell calcium conductance. In addition, both the angiotensin AT1A receptor- and the Gbetagamma-induced stimulation of L-type Ca2+ channels were blocked by pretreatment of the cells with wortmannin, at nanomolar concentrations. Correspondingly, intracellular infusion of an enzymatically active purified recombinant Gbetagamma-sensitive phosphoinositide 3-kinase, PI3Kgamma, mimicked Gbetagamma-induced stimulation of Ca2+ channels. Both Gbetagamma- and PI3Kgamma-induced stimulations of Ca2+ channel currents were reduced by protein kinase C inhibitors suggesting that the Gbetagamma/PI3Kgamma-activated transduction pathway involves a protein kinase C. These results indicate for the first time that Gbetagamma dimers stimulate the vascular L-type Ca2+ channels through a Gbetagamma-sensitive PI3K.  相似文献   

2.
Although protein kinase C (PKC) and phosphatidylinositol 3 (PI3)-kinase are implicated in cardioprotective signal transduction mediated by ischemic preconditioning, their role in pharmacological preconditioning (PPC) has not been determined. Cultured neonatal rat cardiomyocytes (CMCs) were subjected to simulated ischemia for 2 h followed by 15 min of reoxygenation. PPC of CMCs consisted of administration of 50 microM adenosine, 50 microM diazoxide, and 50 microM S-nitroso-N-acetylpenicillamine (SNAP), each alone or in combination, for 15 min followed by 30 min of washout before simulated ischemia. Although PKC-epsilon and PI3-kinase were significantly activated during treatment with adenosine, activation of these kinases dissipated after washout. In contrast, PPC combined with adenosine, diazoxide, and SNAP elicited sustained activation of PKC-epsilon and PI-3 kinase after washout. The combined-PPC, but not the single-PPC, protocol conferred antiapoptotic and antinecrotic effects after reoxygenation. The PKC inhibitor chelerythrine (5 microM) or the PI3-kinase inhibitor LY-294002 (10 microM) given during the washout period partially blocked the activation of PKC-epsilon and PI3-kinase mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely inhibited activation of PKC-epsilon and PI3-kinase. Chelerythrine or LY-294002 partially blocked antiapoptotic and antinecrotic effects mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely abrogated antiapoptotic and antinecrotic effects. These results suggest that the combined-PPC protocol confers cardioprotective memory through sustained and interdependent activation of PKC and PI3-kinase.  相似文献   

3.
Previous results have shown that in rat portal vein myocytes the betagamma dimer of the G(13) protein transduces the angiotensin II-induced stimulation of calcium channels and increase in intracellular Ca(2+) concentration through activation of phosphoinositide 3-kinase (PI3K). In the present work we determined which class I PI3K isoforms were involved in this regulation. Western blot analysis indicated that rat portal vein myocytes expressed only PI3Kalpha and PI3Kgamma and no other class I PI3K isoforms. In the intracellular presence of an anti-p110gamma antibody infused by the patch clamp pipette, both angiotensin II- and Gbetagamma-mediated stimulation of Ca(2+) channel current were inhibited, whereas intracellular application of an anti-p110alpha antibody had no effect. The anti-PI3Kgamma antibody also inhibited the angiotensin II- and Gbetagamma-induced production of phosphatidylinositol 3,4,5-trisphosphate. In Indo-1 loaded cells, the angiotensin II-induced increase in [Ca(2+)](i) was inhibited by intracellular application of the anti-PI3Kgamma antibody, whereas the anti-PI3Kalpha antibody had no effect. The specificity of the anti-PI3Kgamma antibody used in functional experiments was ascertained by showing that this antibody did not recognize recombinant PI3Kalpha in Western blot experiments. Moreover, anti-PI3Kgamma antibody inhibited the stimulatory effect of intracellularly infused recombinant PI3Kgamma on Ca(2+) channel current without altering the effect of recombinant PI3Kalpha. Our results show that, although both PI3Kgamma and PI3Kalpha are expressed in vascular myocytes, the angiotensin II-induced stimulation of vascular L-type calcium channel and increase of [Ca(2+)](i) involves only the PI3Kgamma isoform.  相似文献   

4.
This study identifies some early events contributing to the redox regulation of platelet-derived growth factor receptor (PDGFr) activation and its signalling in NIH3T3 fibroblasts. We demonstrate for the first time that the redox regulation of PDGFr tyrosine autophosphorylation and its signalling are related to NADPH oxidase activity through protein kinase C (PKC) and phosphoinositide-3-kinase (PI3K) activation and H2O2 production. This event is also essential for complete PDGF-induced activation of c-Src kinase by Tyr416 phosphorylation, and the involvement of c-Src kinase on H2O2-induced PDGFr tyrosine phosphorylation is demonstrated, suggesting a role of this kinase on the redox regulation of PDGFr activation. Finally, it has been determined that not only PI3K activity, but also PKC activity, are related to NADPH oxidase activation due to PDGF stimulation in NIH3T3 cells, as it occurs in non-phagocyte cells. Therefore, we suggest a redox circuit whereby, upon PDGF stimulation, PKC, PI3K and NADPH oxidase activity contribute to complete c-Src kinase activation, thus promoting maximal phosphorylation and activation of PDGFr tyrosine phosphorylation.  相似文献   

5.
Stimulation of cardiac beta-adrenergic receptors (beta-AR) activates both the G(s)- and G(i)-coupled signaling cascades, including the phosphoinositide 3 kinase (PI3K) pathway, that have important physiological implications. Multiple isoforms of PI3K exist in the heart. The goals of this study were to examine the intracellular signaling pathways linking beta-AR to PI3K and to identify the PI3K isoform mediating this transactivation in a cardiac context. Acute beta-AR stimulation with isoproterenol resulted in increased tyrosine kinase-associated PI3K activity and phosphorylation of Akt and p70S6K in H9c2 cardiomyocytes. Cotreatment with ICI-118,551, but not CGP-20712, abolished the increase in PI3K activity, suggesting a beta(2)-AR-mediated event. PI3K activation was also abrogated by cotreatment with pertussis toxin, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2, a selective Src-family tyrosine kinases inhibitor), or AG-1296 [selective platelet-derived growth factor receptor (PDGFR) inhibitor] but not with an inhibitor for protein kinase A, protein kinase C, Ras, adenylyl cyclase, epidermal growth factor receptor, or insulin-like growth factor-1 receptor. beta-AR stimulation induced an increase in tyrosine phosphorylation of PDGFR, which was abolished by inhibition of Src either by PP2 or small interfering RNA. Moreover, H9c2 cardiomyocytes stably transfected with a vector expressing a Gbetagamma sequestrant peptide derived from the COOH-terminus of beta-AR kinase-1 failed to activate PI3K after beta-AR stimulation, suggesting Gbetagamma is required for the transactivation. Furthermore, acute beta-AR stimulation in vivo resulted in increases in PDGFR-associated PI3K and PI3Kalpha isoform activities but not the activities of other isoforms (PI3Kbeta, -delta, -gamma) in adult mouse heart. Taken together, these data provide in vitro and in vivo evidence for a novel mechanism of beta-AR-mediated transactivation of cardiac PI3Kalpha via sequential involvement of Galpha(i)/Gbetagamma, Src, and PDGFR.  相似文献   

6.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   

7.
Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) were not completely understood. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 in RBA-1 cells and cells migration which were attenuated by pretreatment with the inhibitor of receptor tyrosine kinase (Genistein), c-Src (PP1), Jak2 (AG490), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), PKCs (Ro318220), PKCδ (Rottlerin), or NF-κB (Bay11-7082) and transfection with siRNA of c-Src, PDGFR, Akt, PKCδ, ATF2, p65, IKKα, or IKKβ. In addition, thrombin-stimulated c-Src, Jak2, or PDGFR phosphorylation was inhibited by a thrombin inhibitor (PPACK), PP1, AG490, or AG1296. Thrombin further stimulated c-Src and PDGFR complex formation in RBA-1 cells. Thrombin also stimulated Akt and PKCδ phosphorylation and PKCδ translocation which were reduced by PPACK, PP1, AG490, AG1296, or LY294002. We further observed that thrombin markedly stimulated ATF2 or IκBα phosphorylation and NF-κB p65 translocation which were inhibited by Rottlerin or LY294002. Finally, thrombin stimulated in vivo binding of p65 to the MMP-9 promoter, which was reduced by pretreatment with Rottlerin or LY294002. These results concluded that in RBA-1 cells, thrombin activated a c-Src/Jak2/PDGFR/PI3K/Akt/PKCδ pathway, which in turn triggered ATF2 and NF-κB activation and ultimately induced MMP-9 expression associated with cell migration.  相似文献   

8.
9.
K+ channels composed of GIRK subunits are predominantly expressed in the heart and various regions of the brain. They are activated by betagamma-subunits released from pertussis toxin-sensitive G-proteins coupled to different seven-helix receptors. In rat atrial myocytes, activation of K(ACh) channels is strictly limited to receptors coupled to pertussis toxin-sensitive G-proteins. Upon treatment of myocytes with antisense oligodesoxynucleotides against GRK2, a receptor kinase with Gbetagamma binding sites, in a fraction of cells, K(ACh) channels can be activated by beta-adrenergic receptors. Sensitivity to beta-agonist is insensitive to pertussis toxin treatment. These findings demonstrate a potential role of Gbetagamma binding proteins for target selectivity of G-protein-coupled receptors.  相似文献   

10.
The inward l-dihydroxyphenylalanine (L-dopa) transport supplies renal proximal tubule cells (PTCs) with the precursor for dopamine synthesis. We have previously described insulin-induced stimulation of L-dopa uptake into PTCs. In the present paper we examined insulin-related signaling pathways involved in the increase of l-dopa transport into isolated rat PTCs. Insulin (50-500 microU/ml) increased L-dopa uptake by PTCs, reaching the maximal increment (60% over the control) at 200 microU/ml. At this concentration, insulin also increased insulin receptor tyrosine phosphorylation. Both effects were abrogated by the tyrosine kinase inhibitor genistein (5 microM). In line, inhibition of the protein tyrosine phosphatase by pervanadate (0.2-100 microM) caused a concentration-dependent increase in both the uptake of L-dopa (up to 400%) and protein tyrosine phosphorylation. A synergistic effect between pervanadate and insulin on L-dopa uptake was observed only when threshold (0.2 microM), but not maximal (5 microM), concentrations of pervanadate were assayed. Insulin-induced stimulation of L-dopa uptake was also abolished by inhibition of phosphatidylinositol 3-kinase (PI3K; 100 nM wortmannin, and 25 microM LY-294002) and protein kinase C (PKC; 1 microM RO-318220). Insulin-induced activation of PKC-zeta was confirmed in vitro by its translocation from the cytosol to the membrane fraction, and in vivo by immunohistochemistry studies. Insulin caused a wortmannin-sensitive increase in Akt/protein kinase B (Akt/PKB) phosphorylation and a dose-dependent translocation of Akt/PKB to the membrane fraction. Our findings suggest that insulin activates PKC-zeta, and Akt/PKB downstream of PI3K, and that these pathways contribute to the insulin-induced increase of L-dopa uptake into PTCs.  相似文献   

11.
The aim of the study was to examine the mechanisms by which ACh, acting via m2 receptors, regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. VIP induced VPAC(2) receptor phosphorylation and internalization in freshly dispersed smooth muscle cells. Co-stimulation with acetylcholine (ACh), in the presence of m3 receptor antagonist, 4-DAMP, augmented VPAC(2) receptor phosphorylation and internalization. The m2 receptor antagonist methoctramine or the c-Src inhibitor PP2 blocked the effect of ACh, suggesting that the augmentation was mediated by c-Src, derived from m2 receptor activation. ACh induced activation of c-Src and phosphorylation of GRK2 and the effects of ACh were blocked by methoctramine, PP2, or by uncoupling of m2 receptors from G(i3) with pertussis toxin. In conclusion, we identified a novel mechanism of cross-regulation of GRK2-mediated phosphorylation and internalization of G(s)-coupled VPAC(2) receptors by G(i)-coupled m2 receptors via tyrosine phosphorylation of GRK2 and stimulation of GRK2 activity.  相似文献   

12.
The activation of phosphatidylinositol (PI) 3-kinase and Akt/protein kinase B (PKB) by tumor necrosis factor (TNF)-alpha and their roles on stimulation of protein synthesis were investigated in cultured neonatal rat cardiac myocytes. Treatment of cells with TNF-alpha resulted in enlargement of cell surface area and stimulation of protein synthesis without affecting myocyte viability. TNF-alpha induced marked activation of PI3-kinase and Akt/PKB, and the activation of PI3-kinase and Akt/PKB was rapid (maximal at 10 and 15 min, respectively) and concentration dependent. Akt/PKB activation by TNF-alpha was inhibited by a PI3-kinase-specific inhibitor LY-294002 and adenovirus-mediated expression of a dominant negative mutant of PI3-kinase, indicating that TNF-alpha activates Akt/PKB through PI3-kinase activation. Furthermore, TNF-alpha-induced protein synthesis was inhibited by pretreatment with LY-294002 and expression of a dominant negative mutant of PI3-kinase or Akt/PKB. These results indicate that activation of the PI3-kinase-Akt/PKB pathway plays an essential role in protein synthesis induced by TNF-alpha in cardiac myocytes.  相似文献   

13.
Our previous studies indicated that opioid-induced cardioprotection occurs via activation of mitochondrial ATP-sensitive K(+) (K(ATP)) channels. However, other elements of the Met(5)-enkephalin (ME) cardioprotection pathway are not fully characterized. In the present study, we investigated the role of tyrosine kinase, MAPK, and phosphatidylinositol 3-kinase (PI3K) signaling in ME-induced protection. Ca(2+)-tolerant, adult rabbit cardiomyocytes were isolated by collagenase digestion and subjected to simulated ischemia for 180 min. ME was administered 15 min before the 180 min of simulated ischemia; blockers were administered 15 min before ME. Cell death was assessed by trypan blue as a function of time. The epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 (250 nM) blocked ME-induced protection, but the inactive analog AG-9 (100 microM) did not. Treatment with herbimycin (1 microM) completely eliminated ME-induced protection. To verify that ME activates EGFR and to determine the involvement of Src, Western blotting of EGFR was performed after ME administration with and without herbimycin A. ME resulted in herbimycin-sensitive robust phosphorylation of EGFR at Tyr(992) and Tyr(1068). Administration of the selective MAPK inhibitor PD-98059 (10 nM) and the specific MEK1/2 inhibitor U-0126 (10 microM) also inhibited ME-induced cardioprotection. ME-induced ERK1/2 phosphorylation was significantly reduced by PD-98059, the EGFR kinase inhibitor PD-153035 (10 microM), and chelerythrine (2 microM). The PI3K inhibitor LY-294002 (20 microM) abrogated ME-induced protection, and ME-induced Akt phosphorylation at Ser(473) was suppressed by LY-294002, PD-153035, and chelerythrine. We conclude that ME-induced cardioprotection is mediated via Src-dependent EGFR transactivation and activation of the PI3K and MAPK pathways.  相似文献   

14.
Prolactin (PRL) stimulates breast cancer cell proliferation; however, the involvement of PRL-activated signaling molecules in cell proliferation is not fully established. Here we studied the role of c-Src on PRL-stimulated proliferation of T47D and MCF7 breast cancer cells. We initially observed that PRL-dependent activation of focal adhesion kinase (Fak), Erk1/2, and cell proliferation was mediated by c-Src in T47D cells, because expression of a dominant-negative form of c-Src (SrcDM, K295A/Y527F) blocked the PRL-dependent effects. The Src inhibitor PP1 abrogated PRL-dependent in vivo activation of Fak, Erk1/2, p70S6K, and Akt and the proliferation of T47D and MCF7 cells; Janus kinase 2 (Jak2) activation was not affected. However, in vitro, Fak and Jak2 kinases were not directly inhibited by PP1, demonstrating the effect of PP1 on c-Src kinase as an upstream activator of Fak. Expression of Fak mutant Y397F abrogated PRL-dependent activation of Fak, Erk1/2, and thymidine incorporation, but had no effect on p70S6K and Akt kinases. MAPK kinase 1/2 (Mek1/2) inhibitor PD184352 blocked PRL-induced stimulation of Erk1/2 and cell proliferation; however, p70S6K and Akt activation were unaffected. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished cell proliferation and activation of p70S6K and Akt; however, PRL-dependent activation of Erk1/2 was not modified. Moreover, we show that both c-Src/PI3K and c-Src/Fak/Erk1/2 pathways are involved in the up-regulation of c-myc and cyclin d1 expression mediated by PRL. The previous findings suggest the existence of two PRL-dependent signaling cascades, initiated by the c-Src-mediated activation of Fak/Erk1/2 and PI3K pathways that, subsequently, control the expression of c-Myc and cyclin D1 and the proliferation of T47D and MCF7 breast cancer cells.  相似文献   

15.
The effects of LY-171883, an orally active leukotriene antagonist, on membrane currents were examined in pituitary GH(3) and in neuroblastoma IMR-32 cells. In GH(3) cells, LY-171883 (1-300 microM) reversibly increased the amplitude of Ca(2+)-activated K(+) current in a concentration-dependent manner with an EC(50) value of 15 microM. In excised inside-out patches recorded from GH(3) cells, the application of LY-171883 into cytosolic face did not modify single channel conductance of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels; however, it did increase the channel activity. The LY-171883-stimulated activity of BK(Ca) channels is dependent on membrane potential, and results mainly from an increase in mean open time and a decrease in mean closed time. However, REV-5901 (30 microM) suppressed the activity of BK(Ca) channels and MK-571 (30 microM) did not have any effect on it. Under the current-clamp condition, LY-171883 (30 microM) caused membrane hyperpolarization as well as decreased the firing rate of action potentials in GH(3) cells. In neuroblastoma IMR-32 cells, the application of LY-171883 (30 microM) also stimulated BK(Ca) channel activity in a voltage-dependent manner. However, neither clofibrate (30 microM) nor leukotriene D(4) (10 microM) affected the channel activity in IMR-32 cells. Troglitazone (30 microM) decreased the channel activity, but ciglitazone (30 microM) enhanced it. This study clearly demonstrates that LY-171883 stimulates the activity of BK(Ca) channels in a manner unlikely to be linked to its blockade of leukotriene receptors or stimulation of peroxisome proliferator-activated receptors. The stimulatory effects on these channels may, at least in part, contribute to the underlying cellular mechanisms by which LY-171883 affects neuronal or neuroendocrine function.  相似文献   

16.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) in Chinese hamster ovarian cells expressing endothelin(B) receptor (CHO-ET(B)R). These channels can be discriminated using the Ca(2+) channel blockers, LOE 908 and SK&F 96365. LOE 908 is a blocker of NSCC-1 and NSCC-2, whereas SK&F 96365 is a blocker of NSCC-2. In this study, we investigated the possible role of phosphoinositide 3-kinase (PI3K) in the ET-1-induced activation of NSCCs in CHO-ET(B)R using wortmannin and LY-294002, inhibitors of PI3K. ET-1-induced Ca(2+) influx was partially inhibited in CHO-ET(B)R pretreated with wortmannin or LY-294002. In contrast, addition of wortmannin or LY-294002 after stimulation with ET-1 did not suppress Ca(2+) influx. The Ca(2+) channels activated by ET-1 in wortmannin- or LY-294002-treated CHO-ET(B)R were sensitive to LOE 908 and resistant to SK&F 96365. In conclusion, NSCC-2 is stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated independently of the PI3K pathway. Moreover, PI3K seems to be required for the initiation of the Ca(2+) entry through NSCC-2 but not for its maintenance.  相似文献   

17.
Osmotic swelling of cardiac myocytes and other types of cells activates an outwardly rectifying, tamoxifen-sensitive Cl- current, ICl,swell, but it is unclear whether Cl- currents also are activated by direct mechanical stretch. We tested whether specific stretch of beta1-integrin activates a Cl- current in rabbit left ventricular myocytes. Paramagnetic beads (4.5-microm diameter) coated with mAb to beta1-integrin were applied to the surface of myocytes and pulled upward with an electromagnet while recording whole-cell current. In solutions designed to isolate anion currents, beta1-integrin stretch elicited an outwardly rectifying Cl- current with biophysical and pharmacological properties similar to those of ICl,swell. Stretch-activated Cl- current activated slowly (t1/2 = 3.5 +/- 0.1 min), partially inactivated at positive voltages, reversed near ECl, and was blocked by 10 microM tamoxifen. When stretch was terminated, 64 +/- 8% of the stretch-induced current reversed within 10 min. Mechanotransduction involved protein tyrosine kinase. Genistein (100 microM), a protein tyrosine kinase inhibitor previously shown to suppress ICl,swell in myocytes, inhibited stretch-activated Cl- current by 62 +/- 6% during continued stretch. Because focal adhesion kinase and Src are known to be activated by cell swelling, mechanical stretch, and clustering of integrins, we tested whether these tyrosine kinases mediated the response to beta1-integrin stretch. PP2 (10 microM), a selective blocker of focal adhesion kinase and Src, fully inhibited the stretch-activated Cl- current as well as part of the background Cl- current, whereas its inactive analogue PP3 (10 microM) had no significant effect. In addition to activating Cl- current, stretch of beta1-integrin also appeared to activate a nonselective cation current and to suppress IK1. Integrins are the primary mechanical link between the extracellular matrix and cytoskeleton. The present results suggest that integrin stretch may contribute to mechano-electric feedback in heart, modulate electrical activity, and influence the propensity for arrhythmogenesis.  相似文献   

18.
Gprotein-activated inwardly rectifying K+ channel (GIRK or Kir3) currents are inhibited by mechanical stretch of the cell membrane, but the underlying mechanisms are not understood. In Xenopus oocytes heterologously expressing GIRK channels, membrane stretch induced by 50% reduction of osmotic pressure caused a prompt reduction of GIRK1/4, GIRK1, and GIRK4 currents by 16.6-42.6%. Comparable GIRK current reduction was produced by protein kinase C (PKC) activation (phorbol 12-myristate 13-acetate). The mechanosensitivity of the GIRK4 current was abolished by pretreatment with PKC inhibitors (staurosporine or calphostin C). Neither hypo-osmotic challenge nor PKC activation affected IRK1 currents. GIRK4 chimera (GIRK4-IRK1-(Lys207-Leu245)) and single point mutant (GIRK4(I229L)), in which the phosphatidylinositol 4,5-bisphosphate (PIP2) binding domain or residue was replaced by the corresponding region of IRK1 to strengthen the channel-PIP2 interaction, showed no mechanosensitivity and minimal PKC sensitivity. IRK1 gained mechanosensitivity and PKC sensitivity by reverse double point mutation of the PIP2 binding domain (L222I/R213Q). Overexpression of Gbetagamma, which is known to strengthen the channel-PIP2 interaction, attenuated the mechanosensitivity of GIRK4 channels. In oocytes expressing a pleckstrin homology domain of PLC-delta tagged with green fluorescent protein, hypo-osmotic challenge or PKC activation caused a translocation of the fluorescence signal from the cell membrane to the cytosol, reflecting PIP2 hydrolysis. The translocation was prevented by pretreatment with PKC inhibitors. Involvement of PKC activation in the mechanosensitivity of muscarinic K+ channels was confirmed in native rabbit atrial myocytes. These results suggest that the mechanosensitivity of GIRK channels is mediated primarily by channel-PIP2 interaction, with PKC playing an important role in modulating the interaction probably through PIP2 hydrolysis.  相似文献   

19.
Hypercholesterolemia is a well-known risk factor for cardiovascular disease. In the heart, activation of K(ACh) mediates the vagal (parasympathetic) negative chronotropic effect on heart rate. Yet, the effect of cholesterol on K(ACh) is unknown. Here we show that cholesterol plays a critical role in modulating K(ACh) currents (I(K,ACh)) in atrial cardiomyocytes. Specifically, cholesterol enrichment of rabbit atrial cardiomyocytes led to enhanced channel activity while cholesterol depletion suppressed I(K,ACh). Moreover, a high-cholesterol diet resulted in up to 3-fold increase in I(K,ACh) in rodents. In accordance, elevated currents were observed in Xenopus oocytes expressing the Kir3.1/Kir3.4 heteromer that underlies I(K,ACh). Furthermore, our data suggest that cholesterol affects I(K,ACh) via a mechanism which is independent of both PI(4,5)P(2) and Gβγ. Interestingly, the effect of cholesterol on I(K,ACh) is opposite to its effect on I(K1) in atrial myocytes. The latter are suppressed by cholesterol enrichment and by high-cholesterol diet, and facilitated following cholesterol depletion. These findings establish that cholesterol plays a critical role in modulating I(K,ACh) in atrial cardiomyocytes via a mechanism independent of the channel's major modulators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号