首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atg12 is a post-translational modifier that is activated and conjugated to its single target, Atg5, by a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate is essential for autophagy, the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. Here, we demonstrate that the Atg12 conjugation system exists in Arabidopsis and is essential for plant autophagy as well as in yeast and mammals. We also report the crystal structure of Arabidopsis thaliana (At) ATG12 at 1.8 Å resolution. Despite no obvious sequence homology with ubiquitin, the structure of AtATG12 shows a ubiquitin fold strikingly similar to those of mammalian homologs of Atg8, the other ubiquitin-like modifier essential for autophagy, which is conjugated to phosphatidylethanolamine. Two types of hydrophobic patches are present on the surface of AtATG12: one is conserved in both Atg12 and Atg8 orthologs, while the other is unique to Atg12 orthologs. Considering that they share Atg7 as an E1-like enzyme, we suggest that the first hydrophobic patch is responsible for the conjugation reaction, while the latter is involved in Atg12-specific functions.  相似文献   

2.
《Autophagy》2013,9(2):110-118
Atg12, a post-translational modifier, is activated and conjugated to Atg5 by a ubiquitin-like conjugation system, though it has no obvious sequence homology to ubiquitin. The Atg12-Atg5 conjugate is essential for autophagy, an intracellular bulk degradation process. Here, we show that the carboxyl-terminal region of Atg12 that is predicted to fold into a ubiquitin-like structure is necessary and sufficient for both conjugation and autophagy, which indicates that the domain essential for autophagy resides in the ubiquitin-fold region. We further show that two hydrophobic residues within the ubiquitin-fold region are important for autophagy: mutation at Y149 affects conjugate formation catalyzed by Atg10, an E2-like enzyme, while mutation at F154 has no effect on Atg12-Atg5 conjugate formation but its hydrophobic nature is essential for autophagy. In response to the F154 mutation, Atg8-PE conjugation, the other ubiquitin-like conjugation in autophagy, is severely reduced and autophagosome formation fails. Gel filtration analysis suggests that F154 plays a critical role in the assembly of a functional Atg12-Atg5?Atg16 complex that is requisite for autophagosome formation.  相似文献   

3.
Hanada T  Ohsumi Y 《Autophagy》2005,1(2):110-118
Atg12, a post-translational modifier, is activated and conjugated to Atg5 by a ubiquitin-like conjugation system, though it has no obvious sequence homology to ubiquitin. The Atg12-Atg5 conjugate is essential for autophagy, an intracellular bulk degradation process. Here, we show that the carboxyl-terminal region of Atg12 that is predicted to fold into a ubiquitin-like structure is necessary and sufficient for both conjugation and autophagy, which indicates that the domain essential for autophagy resides in the ubiquitin-fold region. We further show that two hydrophobic residues within the ubiquitin-fold region are important for autophagy: mutation at Y149 affects conjugate formation catalyzed by Atg10, an E2-like enzyme, while mutation at F154 has no effect on Atg12-Atg5 conjugate formation but its hydrophobic nature is essential for autophagy. In response to the F154 mutation, Atg8-PE conjugation, the other ubiquitin-like conjugation in autophagy, is severely reduced and autophagosome formation fails. Gel filtration analysis suggests that F154 plays a critical role in the assembly of a functional Atg12-Atg5.Atg16 complex that is requisite for autophagosome formation.  相似文献   

4.
Genetic and biochemical analyses using yeast Saccharomyces cerevisiae showed that two ubiquitin-like conjugation systems, the Atg8 and Atg12 systems, exist and play essential roles in autophagy, the bulk degradation system conserved in yeast and mammals. These conjugation systems are also conserved in Arabidopsis thaliana; however, further detailed study of plant ATG (autophagy-related) conjugation systems in relation to those in yeast and mammals is needed. Here, we describe the in vitro reconstitution of Arabidopsis thaliana ATG8 and ATG12 (AtATG8 and AtATG12) conjugation systems using purified recombinant proteins. AtATG12b was conjugated to AtATG5 in a manner dependent on AtATG7, AtATG10, and ATP, whereas AtATG8a was conjugated to phosphatidylethanolamine (PE) in a manner dependent on AtATG7, AtATG3, and ATP. Other AtATG8 homologs (AtATG8b-8i) were similarly conjugated to PE. The AtATG8 conjugates were deconjugated by AtATG4a and AtATG4b. These results support the hypothesis that the ATG conjugation systems in Arabidopsis are very similar to those in yeast and mammals. Intriguingly, in vitro analyses showed that AtATG12-AtATG5 conjugates accelerated the formation of AtATG8-PE, whereas AtATG3 inhibited the formation of AtATG12-AtATG5 conjugates. The in vitro conjugation systems reported here will afford a tool with which to investigate the cross-talk mechanism between two conjugation systems.  相似文献   

5.
Structure of Atg5.Atg16, a complex essential for autophagy   总被引:2,自引:0,他引:2  
Atg5 is covalently modified with a ubiquitin-like modifier, Atg12, and the Atg12-Atg5 conjugate further forms a complex with the multimeric protein Atg16. The Atg12-Atg5.Atg16 multimeric complex plays an essential role in autophagy, the bulk degradation system conserved in all eukaryotes. We have reported here the crystal structure of Atg5 complexed with the N-terminal region of Atg16 at 1.97A resolution. Atg5 comprises two ubiquitin-like domains that flank a helix-rich domain. The N-terminal region of Atg16 has a helical structure and is bound to the groove formed by these three domains. In vitro analysis showed that Arg-35 and Phe-46 of Atg16 are crucial for the interaction. Atg16, with a mutation at these residues, failed to localize to the pre-autophagosomal structure and could not restore autophagy in Atg16-deficient yeast strains. Furthermore, these Atg16 mutants could not restore a severe reduction in the formation of the Atg8-phosphatidylethanolamine conjugate, another essential factor for autophagy, in Atg16-deficient strains under starvation conditions. These results taken together suggest that the direct interaction between Atg5 and Atg16 is crucial to the performance of their roles in autophagy.  相似文献   

6.
BACKGROUND INFORMATION: Autophagy is a catabolic process for degradation of cytoplasmic components in the vacuolar apparatus. A genome-wide survey recently showed evolutionary conservation among autophagy genes in yeast, mammals and plants. To elucidate the molecular and subcellular machinery responsible for the sequestration and subsequent digestion of intracellular material in plants, we utilized a combination of morphological and molecular methods (confocal laser-scanning microscopy, transmission electron microscopy and real-time PCR respectively). RESULTS: Autophagy in Arabidopsis thaliana suspension-cultured cells was induced by carbon starvation, which triggered an immediate arrest of cell growth together with a rapid degradation of cellular proteins. We followed the onset of these responses and, in this report, provide a clear functional classification for the highly polymorphic autophagosomes by which the cell sequesters and degrades a portion of its own cytoplasm. Quantification of autophagy-related structures shows that cells respond to the stress signal by a rapid and massive, but transient burst of autophagic activity, which adapts to the stress signal. We also monitored the real-time expressions of AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes, which are orthologues of yeast genes involved in the Atg8 ubiquitination-like conjugation pathway and are linked to autophagosome formation. We show that these autophagy-related genes are transiently up-regulated in a co-ordinated manner at the onset of starvation. CONCLUSIONS: Sucrose starvation induces autophagy and up-regulates orthologues of the yeast Atg8 conjugation pathway genes in Arabidopsis cultured cells. The AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes are expressed in successive waves that parallel the biochemical and cytological remodelling that takes place. These genes thus serve as early markers for autophagy in plants.  相似文献   

7.
《Autophagy》2013,9(5):926-927
Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.  相似文献   

8.
Yeast (Saccharomyces cerevisiae) Atg6/Vps30 is required for autophagy and the sorting of vacuolar hydrolases, such as carboxypeptidase Y. In higher eukaryotes, however, roles for ATG6/VPS30 homologs in vesicle sorting have remained obscure. Here, we show that AtATG6, an Arabidopsis (Arabidopsis thaliana) homolog of yeast ATG6/VPS30, restored both autophagy and vacuolar sorting of carboxypeptidase Y in a yeast atg6/vps30 mutant. In Arabidopsis cells, green fluorescent protein-AtAtg6 protein localized to punctate structures and colocalized with AtAtg8, a marker protein of the preautophagosomal structure. Disruption of AtATG6 by T-DNA insertion resulted in male sterility that was confirmed by reciprocal crossing experiments. Microscopic analyses of AtATG6 heterozygous plants (AtATG6/atatg6) crossed with the quartet mutant revealed that AtATG6-deficient pollen developed normally, but did not germinate. Because other atatg mutants are fertile, AtAtg6 likely mediates pollen germination in a manner independent of autophagy. We propose that Arabidopsis Atg6/Vps30 functions not only in autophagy, but also plays a pivotal role in pollen germination.  相似文献   

9.
Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal α helices and a ubiquitin-like core. Atg8 family members are expressed in various tissues, where they participate in multiple cellular processes, such as intracellular membrane trafficking and autophagy. Their role in autophagy has been intensively studied. Atg8 proteins undergo a unique ubiquitin-like conjugation to phosphatidylethanolamine on the autophagic membrane, a process essential for autophagosome formation. Whereas yeast has a single Atg8 gene, many other eukaryotes contain multiple Atg8 orthologs. Atg8 genes of multicellular animals can be divided, by sequence similarities, into three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3), γ-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16), which are present in sponges, cnidarians (such as sea anemones, corals and hydras) and bilateral animals. Although genes from all three subfamilies are found in vertebrates, some invertebrate lineages have lost the genes from one or two subfamilies. The amino terminus of Atg8 proteins varies between the subfamilies and has a regulatory role in their various functions. Here we discuss the evolution of Atg8 proteins and summarize the current view of their function in intracellular trafficking and autophagy from a structural perspective.  相似文献   

10.
Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.  相似文献   

11.
Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.  相似文献   

12.
Posttranslational modifications of proteins by small polypeptides including ubiquitination, neddylation (related to ubiquitin (RUB) conjugation), and sumoylation are implicated in plant growth and development, and they regulate protein degradation, location, and interaction with other proteins. Ubiquitination mediates the selective degradation of proteins by the ubiquitin (Ub)/proteasome pathway. The ubiquitin-like protein RUB is conjugated to cullins, which are part of a ubiquitin E3 ligase complex that is involved in auxin hormonal signaling. Sumoylation, by contrast, is known for its involvement in guiding protein interactions related to abiotic and biotic stresses and in the regulation of flowering time. ATG8/ATG12-mediated autophagy influences degradation and recycling of cellular components. Other ubiquitin-like modifiers (ULPs) such as homology to Ub-1, ubiquitin-fold modifier 1, and membrane-anchored Ub-fold are also found in Arabidopsis. ULPs share similar three-dimensional structures and a conjugation system, including E1 activating enzymes, E2 conjugation enzymes, and E3 ligases, as well as proteases for deconjugation and recycling of the tags. However, each of the ULP posttranslational modifications possesses its own specific enzymes and modifies its specific targets selectively. This review discusses recent findings on ubiquitination and ubiquitin-like modifier processes and their roles in the posttranslational modification of proteins in Arabidopsis.  相似文献   

13.
A ubiquitin-like protein involved in membrane fusion   总被引:1,自引:0,他引:1  
Subramani S  Farré JC 《Cell》2007,130(1):18-20
Atg8 is a ubiquitin-like protein involved in autophagy in yeast that is targeted to membranes through conjugation to the lipid phosphatidylethanolamine (PE). In this issue of Cell, Nakatogawa et al. (2007) show that Atg8 conjugated to PE mediates tethering between adjacent membranes and stimulates membrane hemifusion, an event that may mimic expansion of the autophagosomal membrane during autophagy.  相似文献   

14.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

15.
Many proteins involved in autophagy have been identified in the yeast Saccharomyces cerevisiae. For example, Atg3 and Atg10 are two E2 enzymes that facilitate the conjugation of the ubiquitin-like proteins (Ubls) Atg8 and Atg12, respectively. Here, we describe the identification and characterization of the predicted Atg10 homolog (SpAtg10) of the evolutionarily distant Schizosaccharomyces pombe. Unexpectedly, SpAtg10 is not essential for autophagy. Instead, we find that SpAtg10 is essential for normal cell cycle progression, and for responses to various stress conditions that perturb the cell cycle, independently of Atg12 conjugation. Taken together, our data indicate that autophagic Ubl conjugation pathways differ between eukaryotes and, furthermore, that enzymes such as Atg10 may have additional functions in controlling key cellular processes such as cell cycle progression. Atg10-related proteins are found from yeast to humans, and, thus, this study has implications for understanding the functions of this protein family in Ubl conjugation in eukaryotes.  相似文献   

16.
Atg7 is a noncanonical, homodimeric E1 enzyme that interacts with the noncanonical E2 enzyme, Atg3, to mediate conjugation of the ubiquitin-like protein (UBL) Atg8 during autophagy. Here we report that the unique N-terminal domain of Atg7 (Atg7(NTD)) recruits a unique "flexible region" from Atg3 (Atg3(FR)). The structure of an Atg7(NTD)-Atg3(FR) complex reveals hydrophobic residues from Atg3 engaging a conserved groove in Atg7, important for Atg8 conjugation. We also report the structure of the homodimeric Atg7 C-terminal domain, which is homologous to canonical E1s and bacterial antecedents. The structures, SAXS, and crosslinking data allow modeling of a full-length, dimeric (Atg7~Atg8-Atg3)(2) complex. The model and biochemical data provide a rationale for Atg7 dimerization: Atg8 is transferred in trans from the catalytic cysteine of one Atg7 protomer to Atg3 bound to the N-terminal domain of the opposite Atg7 protomer within the homodimer. The studies reveal a distinctive E1~UBL-E2 architecture for enzymes mediating autophagy.  相似文献   

17.
Delivery of proteins and organelles to the vacuole by autophagy and the cytoplasm to vacuole targeting (Cvt) pathway involves novel rearrangements of membrane resulting in the formation of vesicles that fuse with the vacuole. The mechanism of vesicle formation and the origin of the membrane are complex issues still to be resolved. Atg18 and Atg21 are proteins essential to vesicle formation and together with Ygr223c form a novel family of phosphoinositide binding proteins that are associated with the vacuole and perivacuolar structures. Their localization requires the activity of Vps34, suggesting that phosphatidylinositol(3)phosphate may be essential for their function. The activity of Atg18 is vital for all forms of autophagy, whereas Atg21 is required for the Cvt pathway but not for nitrogen starvation-induced autophagy. The loss of Atg21 results in the absence of Atg8 from the pre-autophagosomal structure (PAS), which may be ascribed to a reduced rate of conjugation of Atg8 to phosphatidylethanolamine. A similar defect in localization of a second ubiquitin-like conjugate, Atg12-Atg5, suggests that Atg21 may be involved in the recruitment of membrane to the PAS.  相似文献   

18.
The Atg12-Atg5 conjugate, which is formed by an ubiquitin-like conjugation system, is essential to autophagosome formation, a central event in autophagy. Despite its importance, the molecular mechanism of the Atg12-Atg5 conjugate formation has not been elucidated. Here, we report the solution and crystal structures of Atg10 and Atg5 homologs from Kluyveromyces marxianus (Km), a thermotolerant yeast. KmAtg10 comprises an E2-core fold with characteristic accessories, including two β strands, whereas KmAtg5 has two ubiquitin-like domains and a helical domain. The nuclear magnetic resonance experiments, mutational analyses, and crosslinking experiments showed that KmAtg10 directly recognizes KmAtg5, especially its C-terminal ubiquitin-like domain, by its characteristic two β strands. Kinetic analysis suggests that Tyr56 and Asn114 of?KmAtg10 may place the side chain of KmAtg5 Lys145 into the optimal orientation for its conjugation reaction with Atg12. These structural features enable Atg10 to mediate the formation of the Atg12-Atg5 conjugate without a specific E3 enzyme.  相似文献   

19.
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.  相似文献   

20.
In Arabidopsis root tips cultured in medium containing sufficient nutrients and the membrane-permeable protease inhibitor E-64d, parts of the cytoplasm accumulated in the vacuoles of the cells from the meristematic zone to the elongation zone. Also in barley root tips treated with E-64, parts of the cytoplasm accumulated in autolysosomes and pre-existing central vacuoles. These results suggest that vacuolar and/or lysosomal autophagy occurs constitutively in these regions of cells. 3-Methyladenine, an inhibitor of autophagy, inhibited the accumulation of such inclusions in Arabidopsis root tip cells. Such inclusions were also not observed in root tips prepared from Arabidopsis T-DNA mutants in which AtATG2 or AtATG5, an Arabidopsis homolog of yeast ATG genes essential for autophagy, is disrupted. In contrast, an atatg9 mutant, in which another homolog of ATG is disrupted, accumulated a significant number of vacuolar inclusions in the presence of E-64d. These results suggest that both AtAtg2 and AtAtg5 proteins are essential for autophagy whereas AtAtg9 protein contributes to, but is not essential for, autophagy in Arabidopsis root tip cells. Autophagy that is sensitive to 3-methyladenine and dependent on Atg proteins constitutively occurs in the root tip cells of Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号