首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(1):55-57
Transmission electron microscopy (TEM) is currently the standard method to monitor autophagy in tissue. Because TEM is labor intensive, we recently questioned whether marker proteins could be found for unambiguous detection of autophagy in tissue using standard immunohistochemical techniques. Our findings indicated that the identification of autophagy-specific biomarkers for tissue is highly compromised due to lack of differential gene expression. In this respect, TEM remains an indispensable technique for evaluation of autophagy in situ. Nevertheless, immunohistochemical staining of microtubule-associated protein 1 light chain 3 (LC3) appeared to be a valuable technique to detect autophagosome formation in tissue but only when this protein is overexpressed, e.g. in GFP-LC3 transgenic animals. Furthermore, demonstration of granular cytoplasmic ubiquitin inclusions by immunohistochemistry may be an attractive technique to measure autophagic cell degeneration in some human pathologies such as neurodegenerative diseases, heart failure and atherosclerosis.

Addenda to:

In Situ Detection of Starvation-Induced Autophagy

W. Martinet, G.R.Y. De Meyer, L. Andries, A.G. Herman and M.M. Kockx

J Histochem Cytochem 2005; In press  相似文献   

2.
3.
Transmission electron microscopy (TEM) is an indispensable standard method to monitor macroautophagy in tissue samples. Because TEM is time consuming and not suitable for daily routine, many groups try to identify macroautophagy in tissue by conventional immunohistochemistry. The aim of the present study was to evaluate whether immunohistochemical assessment of macroautophagy-related marker proteins such as LC3, ATG5, CTSD/cathepsin D, BECN1/Beclin 1 or SQSTM1/p62 is feasible and autophagy-specific. For this purpose, livers from starved mice were used as a model because hepatocytes are highly sensitive to autophagy induction. ATG7-deficient mouse livers served as negative control. Our findings indicate that unambiguous immunodetection of LC3 in paraffin-embedded tissue specimens was hampered due to low in situ levels of this protein. Maximum sensitivity could only be obtained using high-quality, isoform-specific antibodies, such as antibody 5F10, in combination with Envision+ signal amplification. Moreover, LC3 stains were optimal in neutral-buffered formalin-fixed tissue, immersed in citrate buffer during antigen retrieval. However, even when using this methodology, LC3 monitoring required overexpression of the protein, e.g., in GFP-LC3 transgenic mice. This was not only the case for the liver but also for other organs including heart, skeletal muscle, kidney and gut. Immunohistochemical detection of the autophagy-related proteins ATG5, CTSD or BECN1 is not recommendable for monitoring autophagy, due to lack of differential gene expression or doubtful specificity. SQSTM1 accumulated in autophagy-deficient liver, thus it is not a useful marker for tissue with autophagic activity. We conclude that TEM remains an indispensable technique for in situ evaluation of macroautophagy, particularly in clinical samples for which genetic manipulation or other in vitro techniques are not feasible.  相似文献   

4.
Experimental sepsis can be induced in mice using the cecal ligation and puncture (CLP) method, which causes polymicrobial sepsis. Here, a protocol is provided to induce sepsis of varying severity in mice using the CLP technique. Autophagy is a fundamental tissue response to stress and pathogen invasion. Two current protocols to assess autophagy in vivo in the context of experimental sepsis are also presented here. (I) Transgenic mice expressing green fluorescence protein (GFP)-LC3 fusion protein are subjected to CLP. Localized enhancement of GFP signal (puncta), as assayed either by immunohistochemical or confocal assays, can be used to detect enhanced autophagosome formation and, thus, altered activation of the autophagy pathway. (II) Enhanced autophagic vacuole (autophagosome) formation per unit tissue area (as a marker of autophagy stimulation) can be quantified using electron microscopy. The study of autophagic responses to sepsis is a critical component of understanding the mechanisms by which tissues respond to infection. Research findings in this area may ultimately contribute towards understanding the pathogenesis of sepsis, which represents a major problem in critical care medicine.  相似文献   

5.
Farnesyltransferase (FTase) is an important enzyme that catalyses the modification of protein isoprene downstream of the mevalonate pathway. Previous studies have shown that the tissue of the heart in the suprarenal abdominal aortic coarctation (AAC) group showed overexpression of FTaseβ (FNTB) and the activation of the downstream protein Ras was enhanced. FTase inhibitor (FTI) can alleviate myocardial fibrosis and partly improve cardiac remodelling in spontaneously hypertensive rats. However, the exact role and mechanism of FTase in myocardial hypertrophy and remodelling are not fully understood. Here, we used recombinant adenovirus to transfect neonatal rat ventricular cardiomyocytes to study the effect of FNTB overexpression on myocardial remodelling and explore potential mechanisms. The results showed that overexpression of FNTB induces neonatal rat ventricular myocyte hypertrophy and reduces the survival rate of cardiomyocytes. FNTB overexpression induced a decrease in mitochondrial membrane potential and increased apoptosis in cardiomyocytes. FNTB overexpression also promotes autophagosome formation and the accumulation of autophagy substrate protein, LC3II. Transmission electron microscopy (TEM) and mCherry‐GFP tandem fluorescent‐tagged LC3 (tfLC3) showed that FNTB overexpression can activate autophagy flux by enhancing autophagosome conversion to autophagolysosome. Overactivated autophagy flux can be blocked by bafilomycin A1. In addition, salirasib (a Ras farnesylcysteine mimetic) can alleviate the hypertrophic phenotype of cardiomyocytes and inhibit the up‐regulation of apoptosis and autophagy flux induced by FNTB overexpression. These results suggest that FTase may have a potential role in future treatment strategies to limit the adverse consequences of cardiac hypertrophy, cardiac dysfunction and heart failure.  相似文献   

6.
Tissue microarray (TMA) technology provides a possibility to explore protein expression patterns in a multitude of normal and disease tissues in a high-throughput setting. Although TMAs have been used for analysis of tissue samples, robust methods for studying in vitro cultured cell lines and cell aspirates in a TMA format have been lacking. We have adopted a technique to homogeneously distribute cells in an agarose gel matrix, creating an artificial tissue. This enables simultaneous profiling of protein expression in suspension- and adherent-grown cell samples assembled in a microarray. In addition, the present study provides an optimized strategy for the basic laboratory steps to efficiently produce TMAs. Presented modifications resulted in an improved quality of specimens and a higher section yield compared with standard TMA production protocols. Sections from the generated cell TMAs were tested for immunohistochemical staining properties using 20 well-characterized antibodies. Comparison of immunoreactivity in cultured dispersed cells and corresponding cells in tissue samples showed congruent results for all tested antibodies. We conclude that a modified TMA technique, including cell samples, provides a valuable tool for high-throughput analysis of protein expression, and that this technique can be used for global approaches to explore the human proteome.  相似文献   

7.
Elevated expression of tissue transglutaminase (TG2) in cancer cells has been implicated in the development of drug resistance and metastatic phenotypes. However, the role and the mechanisms that regulate TG2 expression remain elusive. Here, we provide evidence that protein kinase Cdelta (PKCdelta) regulates TG2 expression, which in turn inhibits autophagy, a type II programmed cell death, in pancreatic cancer cells that are frequently insensitive to standard chemotherapeutic agents. Rottlerin, a PKCdelta-specific inhibitor, and PKCdelta small interfering RNA (siRNA) down-regulated the expression of TG2 mRNA and protein and induced growth inhibition without inducing apoptosis in pancreatic cancer cells. Inhibition of PKCdelta by rottlerin or knockdown of TG2 protein by a TG2-specific siRNA resulted in a marked increase in autophagy shown by presence of autophagic vacuoles in the cytoplasm, formation of the acidic vesicular organelles, membrane association of microtubule-associated protein 1 light chain 3 (LC3) with autophagosomes, and a marked induction of LC3-II protein, important hallmarks of autophagy, and by electron microscopy. Furthermore, inhibition of TG2 by rottlerin or by the siRNA led to accumulation of green fluorescent protein (GFP)-LC3-II in autophagosomes in pancreatic cancer cells transfected with GFP-LC3 (GFP-ATG8) expression vector. Knockdown of Beclin-1, a specific autophagy-promoting protein and the product of Becn1 (ATG6), inhibited rottlerin-induced and TG2 siRNA-induced autophagy, indicating that Beclin-1 is required for this process. These results revealed that PKCdelta plays a critical role in the expression of TG2, which in turn regulates autophagy. In conclusion, these results suggest a novel mechanism of regulation of TG2 and TG2-mediated autophagy in pancreatic cancer cells.  相似文献   

8.
Brown adipose tissue mitochondria are characterized by the presence of an uncoupling protein that gives them an exceptional capacity for substrate-controlled respiration and thermogenesis. The specific localization of this protein in rat brown adipocytes was demonstrated using an immunohistochemical technique, the peroxidase-antiperoxidase (PAP) method. Light microscopy observations showed that serum antibodies raised against the uncoupling protein selectively reacted with multilocular brown adipocytes. No labeling could be detected in either unilocular adipocytes, capillaries, or muscle fibers (striated and vascular smooth muscle). Staining was more intensive in certain adipocytes than in others, suggesting the presence of cellular heterogeneity. The specificity of the staining technique was demonstrated by showing that treatment of the preparations with antiserum saturated with an excess of uncoupling protein almost entirely inhibited brown adipocyte labeling. The specificity and selectivity of the PAP method allow the clear differentiation of uncoupling protein-containing adipocytes from other cellular types, suggesting that this immunohistochemical technique will represent an extremely useful tool for studying adipocyte function and differentiation.  相似文献   

9.
《Autophagy》2013,9(10):1263-1267
The prominent occurrence of autophagy in fetal/neonatal myocardial tissue has been recognized for more than three decades as a key process in managing the period of perinatal nutrient deprivation. Fasting-induced autophagy has similarly been characterized as an expedient short-term cardiomyocyte response to nutrient restriction. Discerning how autophagy operates in the heart in disease contexts of substrate dysregulation is proving to be a much more complex challenge. Recent studies relating to insulin signaling and cardiac autophagy activation have provided new insights—and generated new contradictions. We highlight several anomalies and pose a number of questions, which emerge from these studies. How can myocardial autophagy induction be associated with both PtdIns3K-Akt activation (in ischemia) and suppression (in insulin resistance)? What is the explanation for the contrasting findings that myocardial autophagy is elevated in a murine model of type 2 diabetes, yet suppressed in the type 1 diabetic state? And finally, in the type 1 diabetic setting, what could be the basis for downregulated cardiac AMP-activated protein kinase (AMPK)-driven autophagic activity, when activation of this ‘energy stress’ kinase is usually integral to the cellular response to glucose deficit? We summarize and discuss these interesting ambiguities of myocardial autophagy regulation.  相似文献   

10.
11.
Oxidative stress can damage various cellular components of osteoblasts, and is regarded as a pivotal pathogenic factor for bone loss. Increasing evidence indicates a significant role of cell autophagy in response to oxidative stress. However, the role of autophagy in the osteoblasts under oxidative stress remains to be clarified. In this study, we verified that hydrogen peroxide induced autophagy and apoptosis in a dose- and time-dependent manner in osteoblastic Mc3T3-E1 cells. Both 3-methyladenine (the early steps of autophagy inhibitor) and bafilomycin A1 (the last steps of autophagy inhibitor) enhanced the cell apoptosis and reactive oxygen species level in the osteoblasts insulted by hydrogen peroxide. However, promotion of autophagy with either a pharmacologic inducer (rapamycin) or the Beclin-1 overexpressing technique rescued the cell apoptosis and reduced the reactive oxygen species level in the cells. Treatment with H2O2 significantly increased the levels of carbonylated proteins, malondialdehyde and 8-hydroxy-2′-deoxyguanosine, decreased the mitochondrial membrane potential, and increased the mitochondria-mediated apoptosis markers. The damaged mitochondria were cleared by autophagy. Furthermore, the molecular levels of the endoplasmic reticula stress signaling pathway changed in hydrogen peroxide-treated Mc3T3-E1 cells, and blocking this stress signaling pathway by RNA interference against candidates of glucose-regulated protein 78 and protein kinase-like endoplasmic reticulum kinase decreased autophagy while increasing apoptosis in the cells. In conclusion, oxidative damage to osteoblasts could be alleviated by early autophagy through the endoplasmic reticulum stress pathway. Our findings suggested that modulation of osteoblast autophagy could have a potentially therapeutic value for osteoporosis.  相似文献   

12.
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.  相似文献   

13.
The prominent occurrence of autophagy in fetal/neonatal myocardial tissue has been recognized for more than three decades as a key process in managing the period of perinatal nutrient deprivation. Fasting-induced autophagy has similarly been characterized as an expedient short-term cardiomyocyte response to nutrient restriction. Discerning how autophagy operates in the heart in disease contexts of substrate dysregulation is proving to be a much more complex challenge. Recent studies relating to insulin signaling and cardiac autophagy activation have provided new insights-and generated new contradictions. We highlight several anomalies and pose a number of questions, which emerge from these studies. How can myocardial autophagy induction be associated with both PtdIns3K-Akt activation (in ischemia) and suppression (in insulin resistance)? What is the explanation for the contrasting findings that myocardial autophagy is elevated in a murine model of type 2 diabetes, yet suppressed in the type 1 diabetic state? And finally, in the type 1 diabetic setting, what could be the basis for downregulated cardiac AMP-activated protein kinase (AMPK)-driven autophagic activity, when activation of this 'energy stress' kinase is usually integral to the cellular response to glucose deficit? We summarize and discuss these interesting ambiguities of myocardial autophagy regulation.  相似文献   

14.
The Epstein-Barr virus (EBV) is associated with various lymphoproliferative disorders and lymphomas. We have previously demonstrated that treating wild-type TP53-expressing B cell lines with the TP53 pathway activator nutlin-3 induced apoptosis in EBV-negative and EBV-positive latency I cells whereas EBV-positive latency III cells remained much more apoptosis-resistant. Here, we report a constitutively high level of autophagy in these resistant cells which express high levels of the proautophagic protein BECN1/Beclin 1 based, at least in part, on the activation of the NFKB signaling pathway by the viral protein LMP1. Following treatment with nutlin-3, several autophagy-stimulating genes were upregulated both in EBV-negative and EBV-positive latency III cells. However the process of autophagy was only triggered in the latter and was associated with an upregulation of SESN1/sestrin 1 and inhibition of MTOR more rapid than in EBV-negative cells. A treatment with chloroquine, an inhibitor of autophagy, potentiated the apoptotic effect of nutlin-3, particularly in those EBV-positive cells which were resistant to apoptosis induced by nutlin-3 alone, thereby showing that autophagy participates in this resistant phenotype. Finally, using immunohistochemical staining, clinical samples from various B cell lymphoproliferations with the EBV-positive latency II or III phenotype were found to harbor a constitutively active autophagy.  相似文献   

15.
Presently the gold standard diagnostic technique for rabies is the direct immunofluorescence assay (dFA) which is very expensive and requires a high level of expertise. There is a need for more economical and user friendly tests, particularly for use in developing countries. We have established one such test called the direct rapid immunohistochemical test (dRIT) for diagnosis of rabies using brain tissue. The test is based on capture of rabies nucleoprotein (N) antigen in brain smears using a cocktail of biotinylated monoclonal antibodies specific for the N protein and color development by streptavidin peroxidase-amino ethyl carbazole and counter staining with haematoxollin. The test was done in parallel with standard FAT dFA using 400 brain samples from different animals and humans. The rabies virus N protein appears under light microscope as reddish brown particles against a light blue background. There was 100 % correlation between the results obtained by the two tests. Also, interpretation of results by dRIT was easier and only required a light microscope. To conclude, this newly developed dRIT technique promises to be a simple, cost effective diagnostic tool for rabies and will have applicability in field conditions prevalent in developing countries.  相似文献   

16.
1. We have used horseradish peroxidase-conjugated protein A- and 125I-protein A to develop immunohistochemical and radioimmunohistochemical methods for the localization of antigens in brain and other tissues of the rat. 2. We visualized methionine-enkephalin fibers in the rat brain by incubating tissue sections with a specific polyclonal antibody and peroxidase-conjugated protein A. The method is simple, fast, and less expensive and more sensitive than classical immunohistochemical techniques and the principle could be used to visualize many other tissue antigens. 3. Incubation of tissue samples with specific polyclonal antibodies and 125I-protein A, followed by autoradiography, allows the permanent recording of the radioimmunohistochemical localization of brain methionine-enkephalin, tyrosine hydroxylase, and angiotensin-converting enzyme and of pituitary vasopressin and could be applied to the localization of many other tissue antigens. 4. A new quantitative radioimmunohistochemical technique for methionine-enkephalin allows the determination of the endogenous peptide content in discrete brain nuclei from 16-microns-thick sections. The method is based on the quantitative determination of the amount of 125I-protein A bound to specific tissue areas after incubation with a specific polyclonal antibody, followed by autoradiography and computerized microdensitometry. To quantify the endogenous peptide content, the values obtained are interpolated into a methionine-enkephalin internal standard curve. This standard curve was constructed by measuring endogenous concentrations of methionine-enkephalin by radioimmunoassay in specific brain regions and correlating these values with quantitative autoradiographic determinations in homologous areas of adjacent sections. Similar methods can be developed for other tissue antigens. 5. These new methods allow for the localization and quantification of tissue antigens in very discrete areas of the brain and other tissues and have a wide application in neurobiology and pathology.  相似文献   

17.

Background

In standard transmission electron microscopy (TEM), biological samples are supported on carbon films of nanometer thickness. Due to the similar electron scattering of protein samples and graphite supports, high quality images with structural details are obtained primarily by staining with heavy metals.

Methods

Single-layered graphene is used to support the protein self-assemblies of different molecular weights for qualitative and quantitative characterizations.

Results

We show unprecedented high resolution and contrast images of unstained samples on graphene on a low-end TEM. We show for the first time that the resolution and contrast of TEM images of unstained biological samples with high packing density in their native states supported on graphene can be comparable or superior to uranyl acetate-stained TEM images.

Conclusion

Our results demonstrate a novel technique for TEM structural characterization to circumvent the potential artifacts caused by staining agents without sacrificing image resolution or contrast, and eliminate the need for toxic metals. Moreover, this technique better preserves sample integrity for quantitative characterization by dark-field imaging with reduced beam damage.

General significance

This technique can be an effective alternative for bright-field qualitative characterization of biological samples with high packing density and those not amenable to the standard negative staining technique, in addition to providing high quality dark-field unstained images at reduced radiation damage to determine quantitative structural information of biological samples.  相似文献   

18.
Family with Sequence Similarity 134, Member B (FAM134B) is a protein that known to be necessary for the long-term survival of nociceptive and autonomic ganglion neurons. Recent work has exhibited that FAM134B plays a pivotal role in autophagy-mediated turnover of endoplasmic reticulum (ER) membranes, tumor inhibition and lipid homeostasis. In this study, we provide mechanistic links between FAM134B and adipocyte differentiation. Here, we found that adipocyte-specific FAM134B overexpression mice are obese and have increased white adipose tissue (WAT) mass. Serum tests showed that they developed high glucose level and severe insulin resistance. In addition, they also exhibited enhanced autophagy and reduced mitochondria amount, suggesting the function of FAM134B to promote autophagy in adipocytes. Overexpression of FAM134B in 3 T3-L1 preadipocytes promoted autophagy and differentiation, while the effect could be inhibited after treatment with autophagy inhibitors, 3-methyladenine (3-MA). Overexpression cells also showed an early reduction of mitochondria number, while its autophagy flux level increased fast from differentiation day 2. These findings indicate that FAM134B improves adipocytes differentiation through enhancing mitophagy.  相似文献   

19.
Human umbilical cord mesenchymal stem cell‐derived exosomes (hucMSC‐exosomes) have been implicated as a novel therapeutic approach for tissue injury repair and regeneration, but the effects of hucMSC‐exosomes on coxsackievirus B3 (CVB3)‐induced myocarditis remain unknown. The object of the present study is to investigate whether hucMSC‐exosomes have therapeutic effects on CVB3‐induced myocarditis (VMC). HucMSC‐exosomes were identified using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. The purified hucMSC‐exosomes tagged with PKH26 were tail intravenously injected into VMC model mice in vivo and used to administrate CVB3‐infected human cardiomyocytes (HCMs) in vitro, respectively. The effects of hucMSC‐exosomes on myocardial pathology injury, proinflammatory cytokines and cardiac function were evaluated through haematoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) and Doppler echocardiography. The anti‐apoptosis role and potential mechanism of hucMSC‐exosomes were explored using TUNEL staining, flow cytometry, immunohistochemistry, Ad‐mRFP‐GFP‐LC3 transduction and Western blot. In vivo results showed that hucMSC‐exosomes (50 μg iv) significantly alleviated myocardium injury, shrank the production of proinflammatory cytokines and improved cardiac function. Moreover, in vitro data showed that hucMSC‐exosomes (50 μg/mL) inhibited the apoptosis of CVB3‐infected HCM through increasing pAMPK/AMPK ratio and up‐regulating autophagy proteins LC3II/I, BECLIN‐1 and anti‐apoptosis protein BCL‐2 as well as decreasing pmTOR/mTOR ratio, promoting the degradation of autophagy flux protein P62 and down‐regulating apoptosis protein BAX. In conclusion, hucMSC‐exosomes could alleviate CVB3‐induced myocarditis via activating AMPK/mTOR‐mediated autophagy flux pathway to attenuate cardiomyocyte apoptosis, which will be benefit for MSC‐exosome therapy of myocarditis in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号