首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects and the sites of action of 5-Hydroxytryptamine (5HT) were examined in transverse muscular strips of pigeon oesophagus. 5-Hydroxytryptamine (0.001 to 30 microM) induced a concentration-dependent excitatory effect on the EMG activity. This response was mainly characterized by an increase in burst frequency. The maximum 5-HT-induced excitatory effect was not altered by methysergide (10 microM), but was abolished by tetrodotoxin (3 microM). Excitatory response to 5-HT was partly opposed by atropine (1 microM), potentiated by 5-methoxy-N, N-dimethyltryptamine (1 microM) and was not altered by guanethidine (10 microM). These results indicate that 5-HT activates the pigeon oesophagus indirectly via neural elements and has no direct action on the smooth muscle cells. 5-HT is thought to stimulate three different intramural neuron types: excitatory cholinergic neurons, excitatory non-cholinergic neurons and inhibitory non-cholinergic non-adrenergic neurons. The action on these different neurons seems to be mediated via different receptors.  相似文献   

2.
Functional innervation of cat airways smooth muscle was examined in isolated segments of trachea and bronchi using electrical field stimulation (EFS) techniques. Field stimulation caused contraction in tissues at resting tone and biphasic responses (contraction followed by relaxation) in tissues precontracted with 5-hydroxytryptamine (5-HT). Contractions were abolished by 10(-6) M atropine. Inhibitory responses were dependent on impulse voltage, duration, and frequency. At low voltages (less than or equal to 10 V) and pulse durations (less than or equal to 0.3 ms), EFS induced relaxations were abolished by 3 X 10(-6) M tetrodotoxin (TTX). Greater stimulus parameters elicited TTX-resistant relaxations. Pretreatment of the tissues with 10(-6) M propranolol and 10(-5) M guanethidine caused rightward shifts in relaxation frequency-response curves. These findings indicate that cat airways are innervated by excitatory cholinergic, inhibitory adrenergic, and inhibitory nonadrenergic noncholinergic (NANC) nerves. Pretreatment of the tissues with hexamethonium, cimetidine, indomethacin, or nordihydroguaiaretic acid did not affect NANC relaxation responses. It is concluded that NANC inhibitory responses in cat airway smooth muscle are mediated through intrinsic postganglionic nerve fibers and occur independently of histamine H2-receptor activation and without involvement of cyclooxygenase or lipoxygenase products of arachidonic acid metabolism.  相似文献   

3.
The 5-HT1B/D receptor agonist sumatriptan has been proposed to treat dyspeptic symptoms, because it facilitates gastric accommodation. It is unknown whether stimulation of 5-HT1B/D receptors is involved. Thus, in four conscious dogs, we compared the effects of sumatriptan alone or combined with N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-[1,1-biphenyl]-4-carboxamide hydrocloride (GR-127935), N-[3-[3 (dimethylamino)-ethoxy]-4-methoxyphenyl]-2'-[methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)]-[1,1-biphenyl]-4-carboxamide hydrocloride (SB-216641 hydrochloride), or 3-[4-(4-chloro-phenyl)piperazin-1-yl]-1,1-diphenyl-2-propanol hydrochloride (BRL-15572 hydrochloride) (respectively, nonselective 5-HT1B/D, selective 5-HT1B, and selective 5-HT1D receptor antagonists) on gastric accommodation to isobaric distensions performed with a barostat. An exponential and a linear model were used to fit the pressure-volume relationship. An exponential equation fitted the data better than a linear equation. Sumatriptan (800 nmol/kg iv) induced an immediate gastric relaxation (Deltavolume: 112 +/- 44 ml, P < 0.05). After sumatriptan, the pressure-volume curve was shifted toward significantly higher volumes. This effect was fully reversed by GR-127935 or SB-216641 but not by BRL-15572. In conclusion, 5-HT1B receptors seem to play an important role in modulating gastric accommodation to a distending stimulus. An exponential model for pressure-volume curves fits well with the concept of gastric adaptive relaxation.  相似文献   

4.
The lower esophageal sphincter (LES) has a circular muscle component exhibiting spontaneous tone that is relaxed by nitric oxide (NO) and a low-tone sling muscle that contracts vigorously to cholinergic stimulation but with little or no evidence of NO responsiveness. This study dissected the responses of the sling muscle to nitrergic innervation in relationship to its cholinergic innervation and circular muscle responses. Motor responses were induced by electrical field stimulation (EFS; 1-30 Hz) of muscle strips from sling and circular regions of the feline LES in the presence of cholinergic receptor inhibition (atropine) or NO synthase inhibition [NG-nitro-L-arginine (L-NNA)+/-atropine]. This study showed the following. First, sling muscle developed less intrinsic resting tone compared with circular muscle. Second, with EFS, sling muscle contracted (most at 50% by 5 Hz. Third, on neural blockade with atropine or L-NNA+/-atropine, 1) sling muscle, although predominantly influenced by excitatory cholinergic stimulation, had a small neural NO-mediated inhibition, with no significant non-NO-mediated inhibition and 2) circular muscle, although little affected by cholinergic influence, underwent relaxation predominantly by neural release of NO and some non-NO inhibitory influence (at higher EFS frequency). Fourth, the sling, precontracted with bethanecol, could relax with NO and some non-NO inhibition. Finally, the tension range of both muscles is similar. In conclusion, sling muscle has limited NO-mediated inhibition to potentially augment or replace sling relaxation effected by switching off its cholinergic excitation. Differences within the LES sling and circular muscles could provide new directions for therapy of LES disorders.  相似文献   

5.
The effect of calcitonin gene-related peptide (CGRP) on the cholinergically mediated twitch contraction in longitudinal muscle strips of the small intestine (duodenum, jejunum, ileum) of guinea-pig, pig and man was investigated. Independently of the anatomical region, CGRP inhibited the twitch response in the different specimens of all three species by about 40% with similar IC50 values (1.5-2.4 nmol/l). Only in the guinea-pig small intestine CGRP induced a contraction of the smooth muscle which was sensitive to scopolamine and tetrodotoxin. The electrically evoked [3H]acetylcholine release from jejunal longitudinal muscle strips with myenteric plexus attached of the guinea-pig, which were incubated with [3H]choline, was concentration-dependently inhibited by CGRP. A direct relaxant effect of CGRP on smooth muscle tone of carbachol precontracted preparations was only observed in specimens of the guinea-pig. In conclusion, presynaptic inhibitory CGRP receptors on cholinergic neurones modulate the release of acetylcholine in different parts of the small intestine.  相似文献   

6.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

7.
Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca(2+) and electric activities in ICC were performed by employing fluorescent Ca(2+) imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca(2+) antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca(2+) oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT(3) receptor antagonist suppressed spontaneous Ca(2+) activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT(3) receptor agonist, restored it. GR113808, a selective antagonist for 5-HT(4), and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT(3) receptors, had little effect on ICC Ca(2+) activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT(3) receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT(3) receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome.  相似文献   

8.
9.
The effects of nicotine on 5-hydroxytryptamine (5-HT) release from serotonergic nerve endings in rat dorsal hippocampal slices were studied. Nicotine (50-500 microM:) caused a concentration-dependent increase in 5-HT release. This effect was antagonised by mecamylamine (0.5 microM:), indicating an action at nicotinic receptors. Nicotine-evoked 5-HT release was not affected by tetrodotoxin (3 microM:), cadmium chloride (0.1 mM:), or the absence of Ca(2+) or Na(+) in the superfusion medium. Unexpectedly, higher concentrations of mecamylamine alone (1-50 microM:) increased 5-HT release. This suggested the presence of inhibitory input to 5-HT neurones and that these inhibitory neurones possess tonically active nicotinic receptors. The effect of mecamylamine (50 microM:) on 5-HT release was reduced by the muscarinic M(1) receptor agonist, McN-A-343 (100 microM:), but pirenzepine (0.005-1 microM:), which blocks M(1) receptors, alone increased 5-HT release. Hippocampal serotonergic neurones are known to possess both excitatory nicotinic receptors and inhibitory M(1) receptors. Although there may be several explanations for our results, one possible explanation is that nicotine stimulates 5-HT release by activating nicotinic heteroreceptors on 5-HT terminals. Mecamylamine (0.5 microM:) antagonises this effect, but higher concentrations increase 5-HT release indirectly by blocking the action of endogenous acetylcholine on nicotinic receptors situated on cholinergic neurones that provide muscarinic inhibitory input to 5-HT neurones.  相似文献   

10.
The ability of carbachol and 5-hydroxytryptamine (5-HT) to contract isolated segments of rainbow trout intestine in a concentration-dependent manner indicates the presence of muscarinic and serotoninergic receptors in this tissue. The activity of these agonists appears to be directly on the smooth muscle, since ganglionic blockers and inhibitors of neurotransmission did not inhibit contractions. The carbachol-induced contractions were selectively inhibited by atropine and (+-)-3-quinuclidinyl xanthene-9-carboxylate hemioxalate hydrate, an M-2 muscarinic receptor antagonist. However, the inhibition was not competitive. McN-A-343, an M-1 muscarinic agonist had no effect on intrinsic tone. The 5-HT-induced contractions were selectively inhibited by methysergide and the 5-HT2 receptor blockers, ketanserin and 1-(1-naphthyl)piperazine. Again, the inhibition by these agents was not competitive. 5-HT1 and 5-HT3 receptor antagonists did not inhibit contractions. The results thus suggest that the smooth muscle of the rainbow trout intestine contains M-2 muscarinic and 5-HT2 receptors.  相似文献   

11.
Accumulating evidence suggests that changes in both 5-hydroxytryptamine (5-HT) receptor activity and in the levels of reactive oxygen species (ROS) play an important role in regulating pulmonary artery (PA) vascular responsiveness, particularly in the setting of pulmonary hypertension. Therefore, we hypothesized that increased levels of superoxide enhance 5-HT-induced PA constriction. With the use of a small-vessel bioassay, 5-HT (0.01-10 microM) induced a concentration-dependent vasoconstriction in isolated wild-type murine intrapulmonary arteries (100-150 microm diameter) that was enhanced by both removal of the endothelium and by treatment with either N(G)-nitro-L-arginine methyl ester (30 microM) or xanthine (10 microM) + xanthine oxidase (0.005 U/ml). PA isolated from extracellular superoxide dismutase (EC-SOD) knockout mice also showed enhanced constriction. On the other hand, PA constriction to 5-HT was attenuated by either the addition of GR-127935 (0.1 microM, a selective inhibitor of 5-HT(1B/1D) receptor) or copper/zinc-containing superoxide dismutase (Cu/Zn SOD, 150 U/ml) and in PA isolated from transgenic mice overexpressing human EC-SOD. With the use of both oxidative fluorescent confocal microscopy and lucigenin-enhanced chemiluminescence, superoxide levels were increased significantly after 5-HT-induced PA vasoconstriction. This increase in superoxide levels could be blocked by the exogenous addition of Cu/Zn SOD (150 U/ml) or by apocynin (30 microM, an inhibitor of NADPH oxidase) but was not affected by gp91(phox) knockout mice. Overall, our results are consistent with 5-HT increasing vascular smooth muscle superoxide production via an NADPH oxidase pathway that is independent of gp91(phox), which leads to increases in extracellular superoxide levels, which in turn enhances 5-HT-induced murine pulmonary vasoconstriction.  相似文献   

12.
Summary Both acetylcholine (ACh) and serotonin (5-HT) lowered the serosa-negative transepithelial potential difference (PD) and the short-circuit current (Isc), accompanied by a decrease in NaCl and water absorption across the eel intestine. These inhibitory effects of ACh and 5-HT were blocked by atropine, a muscarinic receptor antagonist, and ICS-205930, a 5-HT3 receptor antagonist, respectively. Even after blocking the ACh receptor with atropine, 5-HT inhibited the PD and Isc, and ACh lowered them after blocking the 5-HT receptor with ICS-205930, indicating that ACh and 5-HT act independently. Similar inhibition in the PD and the Isc was observed after electrical field stimulation (EFS) which is expected to release endogenous regulators. These effects of EFS were reduced by 70% after simultaneous addition of atropine and ICS-205930. Since atropine and ICS-205930 block ACh and 5-HT receptors, respectively, these results suggest that endogenous ACh and 5-HT are released by EFS.Abbreviations ACh acetylcholine - EFS electrical field stimulation - 5-HT serotonin - I sc short-circuit current - PD transepithelial potential difference - R t tissue resistance - TTX tetrodotoxin  相似文献   

13.
Innervation of circular muscle of the canine stomach studied in vitro was investigated by subjecting muscle strips to electrical field stimulation. Strips were cut from the lesser curvature of the gastric corpus and stimulated with 10-s trains of 0.5-ms pulses at 0.5-20 Hz, 40 V. Most responses were classified into one of three types. In general, field stimulation tended to elicit sequences of varying magnitudes of transient on-contraction, on-relaxation, off-relaxation, off-contraction. Responses were abolished by tetrodotoxin. On-contraction was almost abolished by atropine plus desensitization by 5-hydroxytryptamine (5-HT) or substance P. On-relaxation and off-relaxation were not affected by adrenergic blockade, methysergide, apamin, or 4-aminopyridine. ATP usually caused contraction and slightly diminished relaxation to field stimulation. Vasoactive intestinal polypeptide (VIP) had little effect on tone and response to field stimulation. Relaxation disappeared after scorpion venom treatment. This probably resulted from depletion of the transmitter which mediates relaxation. Off-contraction was reduced by atropine, desensitization by 5-HT or substance P, cromoglycate, indomethacin or ATP, but was not affected by adrenergic blockade, hexamethonium, methysergide, mepyramine, or VIP. The findings suggest that innervation of gastric corpus circular muscle included excitatory cholinergic and both excitatory and inhibitory noncholinergic, nonadrenergic innervation. However, the responses of circular muscle to field stimulation in vitro were drastically different from those obtained previously in vivo, suggesting damage or altered inputs to circular muscle when strips of circular muscle are studied.  相似文献   

14.
To compare electrical field stimulation (EFS) with nicotine in the stimulation of excitatory and inhibitory enteric motoneurons (EMN) in the human esophagus, circular lower esophageal sphincter (LES), and circular and longitudinal esophageal body (EB) strips from 20 humans were studied in organ baths. Responses to EFS or nicotine (100 microM) were compared in basal conditions, after N(G)-nitro-l-arginine (l-NNA; 100 microM), and after l-NNA and apamin (1 microM). LES strips developed myogenic tone enhanced by TTX (5 microM) or l-NNA. EFS-LES relaxation was abolished by TTX, unaffected by hexamethonium (100 microM), and enhanced by atropine (3 microM). Nicotine-LES relaxation was higher than EFS relaxation, reduced by TTX or atropine, and blocked by hexamethonium. After l-NNA, EFS elicited a strong cholinergic contraction in circular LES and EB, and nicotine elicited a small relaxation in LES and no contractile effect in EB. After l-NNA and apamin, EFS elicited a strong cholinergic contraction in LES and EB, and nicotine elicited a weak contraction amounting to 6.64 +/- 3.19 and 9.20 +/- 5.51% of that induced by EFS. EFS elicited a contraction in longitudinal strips; after l-NNA and apamin, nicotine did not induce any response. Inhibitory EMN tonically inhibit myogenic LES tone and are efficiently stimulated both by EFS and nicotinic acetylcholine receptors (nAChRs) located in somatodendritic regions and nerve terminals, releasing nitric oxide and an apamin-sensitive neurotransmitter. In contrast, although esophageal excitatory EMN are efficiently stimulated by EFS, their stimulation through nAChRs is difficult and causes weak responses, suggesting the participation of nonnicotinic mechanisms in neurotransmission to excitatory EMN in human esophagus.  相似文献   

15.
Isolated porcine pial veins in the presence of active muscle tone have been shown to exhibit rhythmic contractions (RC) that are inhibited by serotonin (5-HT) in a concentration-dependent manner. The 5-HT inhibition of RC is mediated by an as yet unidentified 5-HT receptor subtype located on the vascular smooth muscle. 5-carboxamidotryptamine, which is a potent but nonselective agonist at 5-HT(7) receptors, has been shown to be the most potent inhibitor of RC in porcine pial veins. Therefore, the present study was designed to determine if the 5-HT-mediated inhibition of RC in pial veins is mediated by 5-HT(7) receptors and if 5-HT(7) receptor mRNA is expressed in endothelium-denuded pial veins; the study was done with the use of an in vitro tissue bath and RT-PCR techniques. Our findings indicated that 5-HT inhibition of RC in porcine pial veins was prevented by 5-HT(7)-receptor antagonists (clozapine, pimozide, and LY-215840) in a concentration-dependent manner. Furthermore, a strong PCR signal for the 5-HT(7) receptor was consistently detected in endothelium-denuded pial veins. Sequence analysis of the amplified products confirmed their high degree of homology with the porcine and/or human 5-HT(7)-receptor gene. Taken together, these data suggest that the 5-HT-induced inhibition of RC in porcine pial veins is at least in part mediated by 5-HT(7) receptors located on the venous smooth muscle.  相似文献   

16.
The effects of the activation of serotonin-7 (5-HT(7)) receptors were investigated in the CA1 area pyramidal cells and stratum radiatum fast spiking GABAergic interneurons of rat hippocampal slices. To activate 5-HT(7) receptors, 5-carboxamidotryptamine (5-CT), a nonselective 5-HT(1A)/5-HT(7) agonist, was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY 100635), a selective 5-HT(1A) receptor antagonist. The activation of 5-HT(7) receptors resulted in a dose-dependent increase in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from pyramidal neurons while the mean amplitude of sIPSCs remained unaltered. A nonselective glutamate receptor antagonist, kynurenic acid, and voltage-gated sodium channel blocker, tetrodotoxin (TTX), attenuated but did not prevent the 5-HT(7) receptor-mediated increase of sIPSCs frequency in pyramidal cells. 5-CT application did not influence the excitability of stratum radiatum interneurons but it dose-dependently increased the mean frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from interneurons while the mean amplitude of sEPSCs remained unaltered. These data suggest that the activation of 5-HT(7) receptors results in an enhancement of the GABAergic transmission in the hippocampal CA1 area via two mechanisms. The first one involves an enhancement of excitatory glutamatergic input to GABAergic interneurons and is likely to be mediated by presynaptic 5-HT(7) receptors. The second effect, most likely related to the activation of 5-HT(7) receptors located on interneurons, results in an enhancement of the release of GABA.  相似文献   

17.
1. The mechanical responses to some autonomic drugs and neuropeptides of longitudinal muscle (LM) and circular muscle (CM) strips isolated from the carp intestinal bulb were investigated in vitro. 2. Acetylcholine and carbamylcholine caused concentration-dependent transient contraction of both LM and CM strips. Tetrodotoxin had no effect, but atropine selectively decreased the contractile responses to acetylcholine and carbamylcholine. 3. Excitatory alpha-2 and inhibitory beta adrenoceptors were present in both LM and CM strips. 4. 5-Hydroxytryptamine (5-HT) caused concentration-dependent contraction of both LM and CM strips. Tetrodotoxin, atropine and methysergide decreased the contractile responses to 5-HT. 5. Some neuropeptides (angiotensin I, angiotensin II, bombesin, bradykinin, neurotensin, somatostatin and vasoactive intestinal polypeptide) did not cause any mechanical response (contraction or relaxation) in either smooth muscle strip. 6. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) caused contraction of both LM and CM strips. However, the time course of the contraction in LM was different from that in CM. The order of potency was NKA greater than SP greater than NKB in LM strips and NKA greater than SP much greater than NKB in CM strips. In LM strips, the contractile responses to tachykinins were unaffected by spantide and methysergide, but partly decreased by tetrodotoxin and atropine. On the other hand, the contractile responses of CM strips were unaffected by tetrodotoxin, atropine, methysergide and spantide. 7. Dynorphin (1-13) (DYN), leucine-enkephalin (L-Enk) and methionine-enkephalin (M-Enk) caused concentration-dependent contraction of both LM and CM strips. The order of potency was DYN greater than M-Enk greater than L-Enk. Naloxone selectively decreased the responses to opiate peptides. 8. The present results indicate that acetylcholine, carbamylcholine, catecholamines, 5-HT, tachykinins (SP, NKA and NKB) and opiate peptides (DYN, L-Enk and M-Enk) affect the mechanical activity of LM and CM strips isolated from the carp intestinal bulb through their specific receptors.  相似文献   

18.
The C57BLKS/J db/db mouse develops hyperglycemia and has delayed gastric emptying that is improved with tegaserod, a partial 5-HT4 agonist. Our aims here were to determine regional gastric contractility alterations in C57BLKS/J db/db mice and to determine the effects of serotonin and tegaserod. The contractile effects of bethanechol, serotonin, and tegaserod in fundic, antral, and pyloric circular muscle were compared in C57BLKS/J db/db mice and normal littermates. The effects of tetrodotoxin, atropine, and 5-HT receptor antagonists were studied. Contractions in response to bethanechol were decreased in the fundus, similar in the antrum, but increased in the pylorus in diabetic mice compared with controls. Serotonin and, to a lesser extent, tegaserod caused contractions that were more pronounced in the fundus than in the antrum and pylorus in both diabetic and normal mice. Serotonin-induced contractions were partially inhibited by atropine, the 5-HT4 antagonist GR113808, and the 5-HT2 antagonist cinanseron but not tetrodotoxin. Regional gastric contractility alterations are present in this diabetic gastroparesis mouse model. Fundic contractility was decreased, but pyloric contractility was increased in the pylorus to cholinergic stimulation in diabetic mice. Serotonin's contractile effect is mediated, in part, through muscarinic, 5-HT2, and 5-HT4 receptors. This study suggests that fundic hypomotility and pyloric hypercontractility, rather than antral hypomotility, play important roles for the gastric dysmotility that occurs in diabetes.  相似文献   

19.
Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25–30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM–30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.  相似文献   

20.
Isolated pinnules of the gill of Aplysia contract when dopamine (DA) is perfused through the bath. The contraction is not blocked by high-Mg2+ seawater, and reflects excitatory receptors for DA on the smooth muscle cells of the gill. The pinnule often shows irregular, spontaneous contractions which are blocked by high-Mg2+ seawater and 30 mM CoCl2. These contractions reflect spontaneous activity of a peripheral nerve plexus. No other transmitter was found to be directly excitatory on the muscle fibers, although there are inhibitory receptors for serotonin (5-HT). Tactile stimulation of the pinnule evoked a two-component contractile reflex contraction due to activation of the peripheral nerve plexus. Acetylcholine, octopamine, and 5-HT but not several other transmitters depressed these responses, presumably due to inhibitory receptors on the neurons of the peripheral plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号