首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orientation and relative positions of all 240 hexons in the icosahedral outer capsid of adenovirus have been determined. Two types of capsid fragments, obtained after selective disruption of the virion, were analyzed using electron microscopy and image-processing techniques. Planar inverted groups-of-nine, arising from the central region of the capsid facet, were minimally stained to reveal the morphology of restricted regions of their component hexons. Images shown to be related by correspondence analysis were averaged and features of the individual hexon molecule, known from an X-ray crystallographic investigation, were used in their interpretation. The study confirms earlier observations that the hexons in the group-of-nine are distributed on a p3 net, shows that the hexons form a close-packed array using the pseudo-hexagonal shape of the hexon base, and provides their relative positions. Twenty interlocking groups-of-nine account for 180 of the 240 hexons present in the viral capsid. The orientation of the remaining 60 peripentonal hexons was obtained from a rotationally averaged image of a quarter-capsid, a novel viral fragment comprising five complete facets. Each peripentonal hexon forms planar asymmetric interactions with two neighbors in an adjacent group-of-nine so that it lies on an extension of the p3 net. The complete facet thus consists of 12 hexons arranged on a planar p3 net, with a shape that permits interlocking of hexons at the capsid edge. The relative positions of the hexons have been determined to within 5 A using the molecular model, and indicate that the pseudo-hexagonal basal regions are close-packed in a manner that maximizes the hexon-hexon contacts. The results confirm the model proposed earlier for the arrangement of hexons within the adenovirus capsid (Burnett, 1985), and show the power of the inter-disciplinary approach.  相似文献   

2.
Each of the more than 1500 polypeptide molecules of 7 different types building up the adenovirus capsid--probably even those of their amino-acids--are in symmetrical location. Every kind of polypeptide forms a separately also symmetrical network in the capsid distributed according to their functions in the inner and outer side and the inside of the facets and edges, but always in compliance with the icosahedral symmetry. Therefore, each different polypeptide also means a general symmetry motif in the capsid in its own symmetry network. Hexons can be considered as general symmetry motifs in some special association that is because of their environmental position four kinds of hexon types can be found, which are on every facet, next to one another, like three identical groups of four (GOF) according to the three-fold rotational symmetry. Two polypeptides of a peripentonal hexon of each GOF orient toward the penton and the third toward the other penton located further on the same edge. There are two versions of the arrangement of the GOFs: the hexons surround either a polypeptide IX or a polypeptide IlIa. The two versions of GOFs on 20 facets symmetrically recurring 60 times as general hexon symmetry motifs form the capsid in combination with the network of other polypeptides. Ideally, the surface of the hexon trimer shows three-fold rotational and three-fold reflexional symmetries. In the arrangement of hexons in the facets the translational, rotational, horizontal and vertical reflexional symmetry and the combination of these, as well as the glide reflexion and the antisymmetry can be found. Each hexon has six nearest neighbours and every hexon takes part in the construction of three hexon rows. Every facet and every vertex made up of five facets has an antisymmetrical pair located on the opposite side of the capsid. Every triangular facet participates in forming three vertices and every facet has three nearest neighbouring facets. In the facets, the polypeptide subunits of polypeptide IX centered GOF hexons have identical counter-clockwise orientation but the orientation of the neighbouring facets is always opposite compared to each other. On the five-fold symmetry axis, any facet can be "turned on" to the adjacent facet or "rotated" to all the others and will take the symmetry and orientation of the facet it got turned on or rotated to. Thus, every facet together with the polypeptides attached to it shows a twenty-fold symmetry and multiplicity. An other type of symmetry and multiplicity in the capsid is that perpendicular to the 6 five-fold rotation axes run a geodetic (equatorial) ribbon like motif (superfieces) altogether six made up of 10 x 10 triangular facets and bent ten-times with an angle of 36 degrees. A triangular facet participates in forming three ribbon-like motifs, which intersect with each other on the given facet, but the same three motifs intersect repeatedly only on the antisymmetrically located facet.  相似文献   

3.
4.
Purified groups of nine hexons (nonamers) from trypsin and sodium deoxycholate-disrupted adenovirus type 5 were found to re-aggregate at low pH values into pairs, rings of five and icosahedral shells of twenty nonamers. Electron microscopy and ultracentrifugation showed that these shells are the same as normal adenovirus capsids minus the twelve vertex assemblies of six capsomers each.The pyramidal rings of five nonamers provided the first clear evidence that the adenovirus capsid is left-handed. Dissociation of the nonamers suggested that they are organized as a central hexon trimer plus three differently bonded dimers, and not as a true p3 net. New evidence is presented, based on two-dimensional hexon crystals, that individual hexons have 3-fold cyclic symmetry and the whole question of hexon-hexon bonding is discussed in the light of these observations.  相似文献   

5.
A major impediment to the use of adenovirus as a gene therapy vector and for vaccine applications is the host immune response to adenovirus hexon-the major protein component of the icosahedral capsid. A solution may lie in novel vectors with modified or chimeric hexons designed to evade the immune response. To facilitate this approach, we have distinguished the portion of hexon that all serotypes have in common from the hypervariable regions that are responsible for capsid diversity and type-specific immunogenicity. The common hexon core-conserved because it forms the viral capsid-sets boundaries to the regions where modifications can be made to produce nonnative hexons. The core has been defined from the large and diverse set of known hexon sequences by an accurate alignment based on the newly refined crystal structures of human adenovirus types 2 (Ad2) and Ad5 hexon. Comparison of the two hexon models, which are the most accurate so far, reveals that over 90% of the residues in each have three-dimensional positions that closely match. Structures for more distant hexons were predicted by building molecular models of human Ad4, chimpanzee adenovirus (AdC68), and fowl adenovirus 1 (FAV1 or CELO). The five structures were then used to guide the alignment of the 40 full-length (>900 residues) hexon sequences in public databases. Distance- and parsimony-based phylogenetic trees are consistent and reveal evolutionary relationships between adenovirus types that parallel those of their animal hosts. The combination of crystallography, molecular modeling, and phylogenetic analysis defines a conserved molecular core that can serve as the armature for the directed design of novel hexons.  相似文献   

6.
Image reconstruction reveals the complex molecular organization of adenovirus   总被引:22,自引:0,他引:22  
The three-dimensional structure of adenovirus has been determined by image reconstruction from cryo-electron micrographs. Comparison with the high resolution X-ray crystal structure of hexon, the major capsid protein, enabled an unusually detailed interpretation of the density map and confirmed the validity of the reconstruction. The hexon packing in the capsid shows more extensive intermolecular interfaces between facets than previously proposed. The reconstruction provides the first three-dimensional visualization of the vertex proteins, including the penton base and its associated protruding fiber. Three minor capsid proteins that stabilize and modulate capsomer interactions are revealed. One of these components stabilizes the group-of-nine hexons in the center of each facet and the other two bridge hexons in adjacent facets. The strategic positions of these proteins highlight the importance of cementing proteins in stabilizing a complex assembly.  相似文献   

7.
While X-ray crystallography provides atomic resolution structures of proteins and small viruses, electron microscopy provides complementary structural information on the organization of larger assemblies at lower resolution. A novel combination of these two techniques has bridged this resolution gap and revealed the various structural components forming the capsid of human type 2 adenovirus. An image reconstruction of the intact virus, derived from cryo-electron micrographs, was deconvolved with an approximate contrast transfer function to mitigate microscope distortions. A model capsid was calculated from 240 copies of the crystallographic structure of the major capsid protein and filtered to the correct resolution. Subtraction of the calculated capsid from the corrected reconstruction gave a three-dimensional difference map revealing the minor proteins that stabilize the virion. Elongated density penetrating the hexon capsid at the facet edges was ascribed to polypeptide IIIa, a component required for virion assembly. Density on the inner surface of the capsid, connecting the ring of peripentonal hexons, was assigned as polypeptide VI, a component that binds DNA. Identification of the regions of hexon that contact the penton base suggests a structural mechanism for previously proposed events during cell entry.  相似文献   

8.
The icosahedral adenovirus capsid has three rotational symmetry axes of different types. The six five-fold, ten three-fold and the fifteen two-fold axes have two superficial points each, altogether 62. The axes determine the number and location of the identical rotational facet groups and that during the different rotational phases which other regular facets and with what multiplicity shall be covered by them. The number of rotational facets of the five-, three- and two-fold rotational symmetry axes is 4, 6.66 and 10, respectively. In all the three cases, there are two kinds of possible arrangements of the facets. During the rotation--when the facets of the facet group placed on one by one to the neighbouring identical facet groups--at the five-fold axes, the facets of the rotational facet group get into cover position 12 times with all the 20 regular capsid facets, 20 times at the three-fold axes, and 30 times at the two-fold axes in a way that a different facet combination (facet hit) falls to every facet, and the original symmetry is not disturbed. After all, this means 240, 400 and 600 facet combinations, i.e. multiplicity in case of five-, three- and two-fold symmetry axes respectively, and these numbers correspond with that of the theoretically possible variations. The same results can be calculated by multiplying the number of real rotations of the capsid bringing the body into itself, i.e. the number 60 with the number of facets contributing to the five-, three- and two-fold rotational phases. The other way of the determination of multiplicity takes into account that all the facet groups of the capsid rotate simultaneously during all the rotational phases, and this multiplies the number of multiplicity with the number of the rotational types five-, three- and two-fold which result in one and the same multiplicity number in the case of five-, three- and two-fold symmetry, alike 1200. Perpendicular to the five-fold symmetry axes with the line of intersection drawn horizontally in the middle along the 6 geodetic ribbon like motifs a regular decagonal intersection forms and the capsid can be cut into two equal parts, in which the polypeptides show a 72 degree rotation from each other, but with a proper rotation the polypeptides get into a congruent position, which means 300 or 600 specific facet combinations. The capsid similar to the icosahedron has also 15 virtual mirror planes which divide the capsid into two, identically arranged halves, forming six right angle triangles on each facet, altogether 120 smaller rectangular so-called Mobius-triangles on the surface. In the three-fold symmetry axis of the facets, these triangles in two separate groups of three can be rotated symmetrically with 120 degrees according to the orientation of the polypeptide subunits in a way that the hexon and other polypeptides too nearly cover each other. Consequently, the adenovirus capsid is a symmetrically arranged body in which several various symmetry types and symmetry systems can be found and their structural symmetry elements exist simultaneously and covering each other. The icosahedral symmetry types and systems are valid and functional simultaneously and in parallel with great multiplicity, but the existence of more than 1500 structural elements in several depth levels, their order of location and distribution make the symmetry of the capsid richer and more complex.  相似文献   

9.
A characteristic of virus assembly is the use of symmetry to construct a complex capsid from a limited number of different proteins. Many spherical viruses display not only icosahedral symmetry, but also local symmetries, which further increase the redundancy of their structural proteins. We have developed a computational procedure for evaluating the quality of these local symmetries that allows us to probe the extent of local structural variations among subunits. This type of analysis can also provide orientation parameters for carrying out non-icosahedral averaging of quasi-equivalent subunits during three-dimensional structural determination. We have used this procedure to analyze the three types of hexon (P, E and C) in the 8.5 A resolution map of the herpes simplex virus type 1 (HSV-1) B capsid, determined by electron cryomicroscopy. The comparison of the three hexons showed that they have good overall 6-fold symmetry and are almost identical throughout most of their lengths. The largest difference among the three lies near the inner surface in a region of about 34 A in thickness. In this region, the P hexon displays slightly lower 6-fold symmetry than the C and E hexons. More detailed analysis showed that parts of two of the P hexon subunits are displaced counterclockwise with respect to their expected 6-fold positions. The most highly displaced subunit interacts with a subunit from an adjacent P hexon (P'). Using the local 6-fold symmetry axis of the P hexon as a rotation axis, we examined the geometrical relationships among the local symmetry axes of the surrounding capsomeres. Deviations from exact symmetry are also found among these local symmetry axes. The relevance of these findings to the process of capsid assembly is considered.  相似文献   

10.
Three-dimensional structure of the HSV1 nucleocapsid   总被引:26,自引:0,他引:26  
J D Schrag  B V Prasad  F J Rixon  W Chiu 《Cell》1989,56(4):651-660
The three-dimensional structures of full and empty capsids of HSV1 were determined by computer analysis of low dose cryo-electron images of ice embedded capsids. The full capsid structure is organized into outer, intermediate, and inner structural layers. The empty capsid structure has only one layer which is indistinguishable from the outer layer of the full capsids. This layer is arranged according to T = 16 icosahedral symmetry. The intermediate layer of full capsids appears to lie on a T = 4 icosahedral lattice. The genomic DNA is located inside the T = 4 shell and is the component of the innermost layer of the full capsids. The outer and intermediate layers interact in such a way that the channels along their icosahedral two-fold axis coincide and form a direct pathway between the DNA and the environment outside the capsid.  相似文献   

11.
Maturation of adenoviruses is distinguished by proteolytic processing of several interior minor capsid proteins and core proteins by the adenoviral protease and subsequent reorganization of adenovirus core. We report the results derived from the icosahedrally averaged cryo-EM structure of a cell entry defective form of adenovirus, designated ts1, at a resolution of 3.7 Å as well as of the localized reconstructions of unique hexons and penton base. The virion structure revealed the structures and organization of precursors of minor capsid proteins, pIIIa, pVI and pVIII, which are closely associated with the hexons on the capsid interior. In addition to a well-ordered helical domain (a.a. 310–397) of pIIIa, highlights of the structure include the precursors of VIII display significantly different structures near the cleavage sites. Moreover, we traced residues 4–96 of the membrane lytic protein (pVI) that includes an amphipathic helix occluded deep in the hexon cavity suggesting the possibility of co-assembly of hexons with the precursors of VI. In addition, we observe a second copy of pVI ordered up to residue L40 in the peripentonal hexons and a few fragments of density corresponding to 2nd and 3rd copies of pVI in other hexons. However, we see no evidence of precursors of VII binding in the hexon cavity. These findings suggest the possibility that differently bound pVI molecules undergo processing at the N-terminal cleavage sites at varying efficiencies, subsequently creating competition between the cleaved and uncleaved forms of VI, followed by reorganization, processing, and release of VI molecules from the hexon cavities.  相似文献   

12.
We report the revised crystal structure of a pseudo-typed human adenovirus at 3.8-Å resolution that is consistent with the atomic models of minor proteins determined by cryo-electron microscopy. The diffraction data from multiple crystals were rescaled and merged to increase the data completeness. The densities for the minor proteins were initially identified in the phase-refined omit maps that were further improved by the phases from docked poly-alanine models to build atomic structures. While the trimeric fiber molecules are disordered due to flexibility and imposition of 5-fold symmetry, the remaining major capsid proteins hexon and penton base are clearly ordered, with the exception of hypervariable region 1 of hexons, the RGD containing loop, and the N-termini of the penton base. The exterior minor protein IX together with the interior minor proteins IIIa and VIII stabilizes the adenovirus virion. A segment of N-terminal pro-peptide of VI is found in the interior cavities of peripentonal hexons, and the rest of VI is disordered. While the triskelion substructures formed by the N-termini of IX conform to excellent quasi 3-fold symmetry, the tetrameric coiled-coils formed by the C-termini and organized in parallel and anti-parallel arrangement do not exhibit any quasi-symmetry. This observation also conveys the pitfalls of using the quasi-equivalence as validation criteria for the structural analysis of extended (non-modular) capsid proteins such as IX. Together, these results remedy certain discrepancies in the previous X-ray model in agreement with the cryo-electron microscopy models.  相似文献   

13.
Rice dwarf virus (RDV) is a double-shelled icosahedral virus.Using electron cryomicroscopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13l outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.  相似文献   

14.
Rice dwarf virus (RDV) is a double-shelled icosahedral virus. Using electron cryomicro-scopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13/ outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.  相似文献   

15.
Three-dimensional structure of the human herpesvirus 8 capsid   总被引:5,自引:0,他引:5       下载免费PDF全文
Wu L  Lo P  Yu X  Stoops JK  Forghani B  Zhou ZH 《Journal of virology》2000,74(20):9646-9654
  相似文献   

16.
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.  相似文献   

17.
Mature human adenovirus particles contain four minor capsid proteins, in addition to the three major capsid proteins (penton base, hexon and fiber) and several proteins associated with the genomic core of the virion. Of the minor capsid proteins, VI plays several crucial roles in the infection cycle of the virus, including hexon nuclear targeting during assembly, activation of the adenovirus proteinase (AVP) during maturation and endosome escape following cell entry. VI is translated as a precursor (pVI) that is cleaved at both N- and C-termini by AVP. Whereas the role of the C-terminal fragment of pVI, pVIc, is well established as an important co-factor of AVP, the role of the N-terminal fragment, pVIn, is currently elusive. In fact, the fate of pVIn following proteolytic cleavage is completely unknown. Here, we use a combination of proteomics-based peptide identification, native mass spectrometry and hydrogen–deuterium exchange mass spectrometry to show that pVIn is associated with mature human adenovirus, where it binds at the base of peripentonal hexons in a pH-dependent manner. Our findings suggest a possible role for pVIn in targeting pVI to hexons for proper assembly of the virion and timely release of the membrane lytic mature VI molecule.  相似文献   

18.
A three-dimensional (3D) cryoelectron microscopy reconstruction of the prototype Atadenovirus (OAdV [an ovine adenovirus isolate]) showing information at a 10.6-A resolution (0.5 Fourier shell correlation) was derived by single-particle analysis. This is the first 3D structure solved for any adenovirus that is not a Mastadenovirus, allowing cross-genus comparisons between structures and the assignment of genus-specific capsid proteins. Viable OAdV mutants that lacked the genus-specific LH3 and p32k proteins in purified virions were also generated. Negatively stained 3D reconstructions of these mutants were used to identify the location of protein LH3 and infer that of p32k within the capsid. The key finding was that LH3 is a critical protein that holds the outer capsid of the virus together. In its absence, the outer viral capsid is unstable. LH3 is located in the same position among the hexon subunits as its protein IX equivalent from mastadenoviruses but sits on top of the hexon trimers, forming prominent "knobs" on the virion surface that visually distinguish OAdV from other known AdVs. Electron density was also assigned to hexon and penton subunits and to proteins IIIa and VIII. There was good correspondence between OAdV density and human AdV hexon structures, which also validated the significant differences that were observed between the penton base protein structures.  相似文献   

19.
Molecular composition of the adenovirus type 2 virion   总被引:30,自引:16,他引:14       下载免费PDF全文
The representation of the different structural polypeptides within the adenovirus virion has been accurately determined, and the particle molecular weight has been derived. A stoichiometric analysis was performed with [35S]methionine as a radiolabel, and analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate the polypeptides. The recently available sequence of the adenovirus type 2 genome was used to determine the number of methionines in each polypeptide. The resulting relative representation was placed on an absolute scale by using the known number of hexon polypeptides per virion. The analysis provides new information on the composition of the vertex region, which has been the subject of some controversy. Penton base was found to be present in 60 copies, distributed as pentamers at each of the 12 vertices. Three fiber monomers were associated with one penton base to form the penton complex. Polypeptide IX was present in 240 copies per virion and 12 copies per group-of-nine hexons, supporting a model proposed earlier for the distribution of this protein. The location of polypeptide IX explains the dissociation of the virus outer capsid into groups-of-nine hexons. The penton base was microheterogeneous, and the relative amounts suggest that the symmetry mismatch, which occurs within the penton complex between base and fiber, is resolved by the synthesis of penton base polypeptides from two closely spaced start codons.  相似文献   

20.
Soluble hexon of type 1 adenovirus was highly purified with different techniques and dialysed against 0.5 M acetate buffer. With this procedure tetrahedral crystals were produced from the soluble hexon capsomers of the virus capsid. Electron microscopic observation of the crystallization process, revealed the development of dense two-dimensional "crystal sheets" following dialysis, in homogeneous hexon preparations containing single hexons. No such formations were observed so far with other types. The occurrence of two-dimensional crystals decreased proportionally to the appearance of three-dimensional crystals, which refers to their possible role in the mechanism of three-dimensional crystal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号