首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In dispersed acini from rat pancreas, cholera toxin caused a significant increase in cellular cyclic AMP but little or no change in amylase secretion. The presence of a secretagogue that causes mobilization of cellular calcium (e.g., cholecystokinin, carbamylcholine, bombesin or ionophore A23187) caused a substantial increase in the effect of cholera toxin on enzyme secretion. Cholera toxin did not alter calcium transport or the changes in calcium transport caused by other secretagogues, and secretagogues that mobilize cellular calcium did not alter cellular cyclic AMP or the increase in cyclic AMP caused by cholera toxin. These results indicate that in dispersed acini from rat pancreas there is post-receptor modulation of the action of cholera toxin by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the effect of the toxin on enzyme secretion.  相似文献   

2.
Summary ATP-dependent Ca2+ uptake into isolated pancreatic acinar cells with permeabilized plasma membranes, as well as into isolated endoplasmic reticulum prepared from these cells, was measured using a Ca2+-specific electrode and45Ca2+. Endoplasmic reticulum was purified on an isopycnic Percoll gradient and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the rough endoplasmic reticulum RNA was enriched threefold and the typical marker for the plasma membrane Na+,K+(Mg2+)ATPase was decreased 20-fold. When different fractions of the Percoll gradient were compared,45Ca2+ uptake correlated with the RNA content and not with the Na+,K+(Mg2+)ATPase activity. The characteristics of nonmitochondrial Ca2+ uptake into leaky isolated cells and45Ca2+ uptake into isolated endoplasmic reticulum were very similar: Calcium uptake was maximal at 0.3 and 0.2 mmol/liter free Mg2+, at 1 and 1 mmol/liter ATP, at pH 6.0 and 6.5, and free Ca2+ concentration of 2 and 2 mol/liter, respectively. Calcium uptake decreased at higher free Ca2+ concentration.45Ca2+ uptake was dependent on monovalent cations (Rb+>K+>Na+>Li+>choline+) and different anions (Cl>Br>SO 4 2– >NO 3 >I>cyclamate>SCN) in both preparations. Twenty mmol/liter oxalate enhanced45Ca2+ uptake in permeabilized cells 10-fold and in vesicles of endoplasmic reticulum, fivefold. Calcium oxalate precipitates in the endoplasmic reticulum of both preparations could be demonstrated by electron microscopy. The nonmitochondrial Ca2+ pool in permeabilized cells characterized in this study has been previously shown to regulate the cytosolic free Ca2+ concentration to 0.4 mol/liter. Our results provide firm evidence that the endoplasmic reticulum plays an important role in the regulation of the cytosolic free Ca2+ concentration in pancreatic acinar cells.  相似文献   

3.
To investigate Ca2+ uptake by Ca2+-depleted bovine chromaffin cells we depleted these cells of Ca2+ by incubating them in Ca2+-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+ 1)45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca2+-depleted cells and cells which had been loaded with BAPTA,45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.Abbreviations used BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid - BAPTA/AM acetoxymethyl ester of BAPTA - [Ca2+]i cytosolic Ca2+ concentration - IP3 inositol 1,4,5-trisphosphate - tBHQ 2,5-di-(t-butyl)-1,4-benzohydroquinone This work was included in a thesis submitted by A.-L. Sui to the Department of Biochemistry, National Yang-Ming Medical College, in partial fulfillment of the requirements for the degree of Doctor of Philosophy  相似文献   

4.
The effect of regucalcin, a Ca2+-binding protein, on Ca2+ transport system in rat renal cortex microsomes was investigated. The presence of regucalcin (10-8 to 10-6 M) in the reaction mixture caused a significant increase in Ca2+-ATPase activity and ATP-dependent45 Ca2+ uptake in the microsomes. Regucalcin (10-7 M) increased Ca2+-ATPase activity independently of increasing concentrations of CaCl_2. The microsomal Ca2+-ATPase activity and45 Ca2+ uptake were markedly decreased by the presence of vanadate (0.1 mM) or N-ethylmaleimide (NEM; 5 mM) in the absence or presence of regucalcin. Dithiothreitol (DTT; 5 mM) markedly elevated Ca2+-ATPase activity and 45Ca2+ uptake in the microsomes. The DTT effects were not further enhanced by regucalcin (10-7 M). Meanwhile, the microsomal Ca2+-ATPase activity and 45Ca2+ uptake were significantly decreased by the presence of dibutyryl cyclic AMP (DcAMP; 10-5 and 10-3 M) or inositol 1,4, 5-trisphosphate (IP3; 10-7 and 10-5 M). The effect of regucalcin (10-7 M) on Ca2+ ATPase activity and 45Ca2+ uptake was weakened in the presence of DcAMP or IP3. The present results demonstrate that regucalcin has a stimulatory effect on ATP-dependent Ca2+ uptake in the microsomes of rat renal cortex due to acting on the thiol groups of Ca2+-ATPase.  相似文献   

5.
Summmary The Ca2+ uptake activity of rat cardiac sacroplasmic reticulum (CSR) in ventricular homogenates is highly unstable, and this instability probably accounts for the low specific activity of Ca2+ uptake in previously reported fractions of isolated rat CSR. The instability was observed at either 0° or 37°, but the Ca2+ uptake activity was relatively stable at 25°. The decay of Ca2+ uptake activity at 0° could not be prevented by either PMSF or leupeptin, but dithiothreitol exerted some protective effects. Sodium metabisulfite prevented decay of the Ca2+ uptake activity of homogenates kept on ice but not of homogenates kept at 37°. We also found that release of the CSR from the cellular debris required homogenization in high KCI. This distinguishes rat CSR from canine CSR. Isolated CSR was produced by a combination of differential centrifugation and discontinuous sucrous gradient centrifugation. The average rate of the sustained oxalate-supported calcium uptake in the resulting CSR fraction was 0.36 mol/min-mg in the absence of CSR calcium channel blockers and 0.67 mol/min/mg in the presence of 10 M ruthenium red. Thus, this preparation has the advantage of containing both the releasing and non-releasing fractions of the CSR. The Ca2+-ATPase rates averaged 1.07 mol/min/mg and 0.88 mol/min-mg in the absence and presence of ruthenium red, respectively. Although these rates are higher than previously reported rates, this CSR preparation should still be considered a crude preparation. A major distinction between the rat CSR and dog CSR was the lower content of Ca2+-ATPase in rat CSR, as judged by SDS-PAGE. Preparations of CSR isolated by this method may be useful in evaluating alterations in CSR function.  相似文献   

6.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

7.
The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to angiotensin II have been investigated. In fura-2 loaded cells exposure to a maximally effective concentration of angiotensin II (100 nM) caused a rapid, but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+ only the initial brief transient was observed. In cells previously treated with thapsigargin in Ca2+-free medium to deplete the internal Ca2+ stores, angiotensin II caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Reintroduction of external Ca2+ to thapsigargin-treated, store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was not further increased upon exposure to angiotensin II. Analysis of the data suggests that in bovine chromaffin cells angiotensin II causes Ca2+ entry via a pathway(s) activated as a consequence of internal store mobilization, and entry through this pathway(s) forms the majority of the sustained Ca2+ influx evoked by angiotensin II.  相似文献   

8.
Membrane potential changes accompanying Ca2+ influx stimulated by release of Ca2+ from intracellular stores (store-regulated Ca2+ uptake) were monitored in BAPTA-loaded rat thymic lymphocytes using the fluorescent indicator bis(1,3-diethylthiobarbituric acid)trimethine oxonol. Depletion of [Ca2+] i stores by the application of thapsigargin, ionomycin or cyclopiazonic acid induced a depolarization which was (i) dependent upon BAPTA-loading, (ii) dependent upon extracellular Ca2+, (iii) independent of extracellular Na+ and (iv) abolished by 5 mm extracellular Ni2+. This depolarization was followed by a charybdotoxin-sensitive repolarization and subsequent hyperpolarization to values approximating the K+ equilibrium potential, consistent with secondary activation of a K+ conductance. These membrane potential changes temporally correlated with Ca2+ influx from the extracellular medium as measured fluorimetrically with indo-1. The divalent cation permeability sequence was investigated by monitoring the magnitude of the depolarization observed following the addition of 4 mm Ca2+, Mn2+, Ba2+ or Sr2+ to cells pretreated with doses of thapsigargin or ionomycin known to activate the store-regulated calcium uptake pathway. On the basis of these experiments, we conclude that the store-regulated Ca2+ uptake pathway has the following permeability sequence: Ca2+ > Mn2+ Ba2+, Sr2+ with Mn2+ displaying significant permeability relative to Ca2+. This pathway is distinguishable from other divalent cation uptake pathways reported in other cells types on the basis of its activation by thapsigargin and its high Mn2+ permeability.This work is supported by grants from the American Heart Association, Louisiana Affiliate (LA-92-6-28), Louisiana Education Quality Support Fund (LEQSF(1993-96)-RD-A-31) and Tulane University Graduate Program in Molecular and Cellular Biology.  相似文献   

9.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

10.
11.
Conclusions While it is generally accepted that Ca2+ plays an important regulatory role in the physiology of a number of non-excitable cells, the mechanisms which regulate intracellular [Ca2+ are far from well established. Ca2+ transporting mechanisms which distribute Ca2+ intracellularly as well as those which allow influx of extracellular Ca2+ are involved in mediating intracellular Ca2+ homestasis. In this paper we have described recent studies on the regulation of the Ca2+ influx system in the data, it appears that the process of Ca2+ entry is extremely complex and may involve several levels of regulation. Understanding the molecular basis of these regulatory mechanisms presents a challeging problem for future studies.  相似文献   

12.
Summary The ATP-dependent Ca2+ transport activity (T. Takuma, B.L. Kuyatt and B.J. Baum,Biochem. J. 227:239–245, 1985) exhibited by inverted basolateral membrane vesicles isolated from rat parotid gland was further characterized. The activity was dependent on Mg2+. Phosphate (5mm), but not oxalate (5mm), increased maximum Ca2+ accumulation by 50%. Half-maximal Ca2+ transport was achieved at 70nm Ca2+ in EGTA-buffered medium while maximal activity required >1 m Ca2+ (V max=54 nmol/mg protein/min). Optimal rates of Ca2+ transport were obtained in the presence of KCl, while in a KCl-free medium (mannitol or sucrose) 40% of the total activity was achieved, which could not be stimulated by FCCP. The initial rate of Ca2+ transport could be significantly altered by preimposed membrane potentials generated by K+ gradients in the presence of valinomycin. Compared to the transport rate in the absence of membrane potential, a negative (interior) potential stimulated uptake by 30%, while a positive (interior) potential inhibited uptake. Initial rates of Ca2+ uptake could also be altered by imposing pH gradients, in the absence of KCl. When compared to the initial rate of Ca2+ transport in the absence of a pH gradient, pH i =7.5/pH o =7.5; the activity was 60% higher in the presence of an outwardly directed pH gradient, pH i =7.5/pH o =8.5; while it was 80% lower when an inwardly directed pH gradient was imposed, pH i =7.5/pH o =6.2. The data show that the ATP-dependent Ca2+ transport in BLMV can be modulated by the membrane potential, suggesting therefore that there is a transfer of charge into the vesicle during Ca2+ uptake, which could be compensated by other ion movements.  相似文献   

13.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

14.
Abstract

Calcium transients play an essential role in cardiomyocytes and electromagnetic fields (EMF) and affect intracellular calcium levels in many types of cells. Effects of EMF on intracellular calcium transients in cardiomyocytes are not well studied. The aim of this study was to assess whether extremely low frequency electromagnetic fields (ELF-EMF) could affect intracellular calcium transients in cardiomyocytes. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to rectangular-wave pulsed ELF-EMF at four different frequencies (15?Hz, 50?Hz, 75?Hz and 100?Hz) and at a flux density of 2?mT. Intracellular calcium concentration ([Ca2+]i) was measured using Fura-2/AM and spectrofluorometry. Perfusion of cardiomyocytes with a high concentration of caffeine (10?mM) was carried out to verify the function of the cardiac Na+/Ca2+ exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca2+-ATPase (SERCA2a). The results showed that ELF-EMF enhanced the activities of NCX and SERCA2a, increased [Ca2+]i baseline level and frequency of calcium transients in cardiomyocytes and decreased the amplitude of calcium transients and calcium level in sarcoplasmic reticulum. These results indicated that ELF-EMF can regulate calcium-associated activities in cardiomyocytes.  相似文献   

15.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

16.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

17.
18.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

19.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

20.
The aim of this study was to quantify the glucose modulation of the plasma membrane calcium pump (PMCA) function in rat pancreatic islets. Ca2+-ATPase activity and levels of phosphorylated PMCA intermediates both transiently declined to a minimum in response to stimulation by glucose. Strictly dependent on Ca2+ concentration, this inhibitory effect was fully expressed at physiological concentrations of the cation (less than 0.5 μM), then progressively diminished at higher concentrations. These results, together with those previously reported on the effects of insulin secretagogues and blockers on the activity, expression and cellular distribution of the PMCA, support the concept that the PMCA plays a key role in the regulation of Ca2+ signaling and insulin secretion in pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号