首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isopenicillin N synthetase (IPNS) from Acremonium chrysogenum was photolabelled by laser-flash photolysis in the presence of a diazirinyl-containing substrate, 2-[3-(3-trifluoromethyl-3H-diazirin-3-yl)-phenoxy]acetyl-S- methyloxycarbonylsulphenyl-L-cysteinyl-D-valine (DCV). Labelling of IPNS by DCV is partially inhibited in the presence of an excess of L-alpha-aminoadipoyl-L-cysteinyl-D-valine (ACV), the natural substrate. In the absence of light, DCV is converted into the corresponding penicillin with comparable Km but significantly depressed Vmax relative to ACV. Selective incorporation of [14C]DCV into IPNS has been demonstrated by fluorography of IPNS analysed by SDS/polyacrylamide-gel electrophoresis. Scintillation counting of labelled IPNS purified on an ion-exchange f.p.l.c. column confirms this result. This methodology may be applicable for studies aimed at investigating the binding of substrates to IPNS.  相似文献   

2.
Isopenicillin N synthase (IPNS) catalyses cyclization of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to isopenicillin N (IPN), the central step in penicillin biosynthesis. Previous studies have shown that IPNS turns over a wide range of substrate analogues in which the valine residue of its natural substrate is replaced with other amino acids. IPNS accepts and oxidizes numerous substrates that bear hydrocarbon sidechains in this position, however the enzyme is less tolerant of analogues presenting polar functionality in place of the valinyl isopropyl group. We report a new ACV analogue δ-(l-α-aminoadipoyl)-l-cysteinyl-d-methionine (ACM), which incorporates a thioether in place of the valinyl sidechain. ACM has been synthesized using solution phase methods and crystallized with IPNS. A crystal structure has been elucidated for the IPNS:Fe(II):ACM complex at 1.40? resolution. This structure reveals that ACM binds in the IPNS active site such that the sulfur atom of the methionine thioether binds to iron in the oxygen binding site at a distance of 2.57?. The sulfur of the cysteinyl thiolate sits 2.36? from the metal.  相似文献   

3.
Isopenicillin N synthase (IPNS) catalyses cyclization of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to isopenicillin N (IPN), the central step in penicillin biosynthesis. Previous studies have shown that IPNS turns over a wide range of substrate analogues in which the valine residue of its natural substrate is replaced with other amino acids. IPNS accepts and oxidizes numerous substrates that bear hydrocarbon sidechains in this position, however the enzyme is less tolerant of analogues presenting polar functionality in place of the valinyl isopropyl group. We report a new ACV analogue δ-(l-α-aminoadipoyl)-l-cysteinyl-d-methionine (ACM), which incorporates a thioether in place of the valinyl sidechain. ACM has been synthesized using solution phase methods and crystallized with IPNS. A crystal structure has been elucidated for the IPNS:Fe(II):ACM complex at 1.40 Å resolution. This structure reveals that ACM binds in the IPNS active site such that the sulfur atom of the methionine thioether binds to iron in the oxygen binding site at a distance of 2.57 Å. The sulfur of the cysteinyl thiolate sits 2.36 Å from the metal.  相似文献   

4.
Isopenicillin N synthase (IPNS), a non-heme iron(II)-dependent oxidase, catalyzes conversion of the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to bicyclic isopenicillin N (IPN), concomitant with the reduction of dioxygen to two molecules of water. Incubation of the "truncated"substrate analogues delta-(l-alpha-aminoadipoyl)-l-cysteinyl-glycine (ACG) and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alanine (ACA) with IPNS has previously been shown to afford acyclic products, in which the substrate cysteinyl residue has undergone a two-electron oxidation. We report X-ray crystal structures for the anaerobic IPNS/Fe(II)/ACG and IPNS/Fe(II)/ACA complexes, both in the absence and presence of the dioxygen analogue nitric oxide. The overall protein structures are very similar to those of the corresponding IPNS/Fe(II)/ACV complexes; however, significant differences are apparent in the vicinity of the active site iron. The structure of the IPNS/Fe(II)/ACG complex reveals that the C-terminal carboxylate of this substrate is oriented toward the active site iron atom, apparently hydrogen-bonded to an additional water ligand at the metal; this is a different binding mode to that observed in the IPNS/Fe(II)/ACV complex. ACA binds to the metal in a manner that is intermediate between those observed for ACV and ACG. The addition of NO to these complexes initiates conformational changes such that both the IPNS/Fe(II)/ACG/NO and IPNS/Fe(II)/ACA/NO structures closely resemble the IPNS/Fe(II)/ACV/NO complex. These results further demonstrate the feasibility of metal-centered rearrangements in catalysis by non-heme iron enzymes and provide insight into the delicate balance between hydrophilic-hydrophobic interactions and steric effects in the IPNS active site.  相似文献   

5.
Isopenicillin N synthase (IPNS) is a non-heme iron(II) oxidase which catalyses the biosynthesis of isopenicillin N (IPN) from the tripeptide δ-l-α-aminoadipoyl-l-cysteinyl-d-valine (lld-ACV). Herein we report crystallographic studies to investigate the binding of a truncated lll-substrate in the active site of IPNS. Two epimeric tripeptides have been prepared by solution phase peptide synthesis and crystallised with the enzyme. δ-l-α-Aminoadipoyl-l-cysteinyl-d-2-amino-3,3-dideuteriobutyrate (lld-ACd2Ab) has the same configuration as the natural substrate lld-ACV at each of its three stereocentres; its epimer δ-l-α-aminoadipoyl-l-cysteinyl-l-2-amino-3,3-dideuteriobutyrate (lll-ACd2Ab) has the opposite configuration at its third amino acid. lll-ACV has previously been shown to inhibit IPNS turnover of its substrate lld-ACV; the all-protiated tripeptide δ-l-α-aminoadipoyl-l-cysteinyl-d-2-aminobutyrate (lld-ACAb) is a substrate for IPNS, being turned over to a mixture of penam and cepham products. Comparisons between the crystal structures of the IPNS:Fe(II):lld-ACd2Ab and IPNS:Fe(II):lll-ACd2Ab complexes offer a possible rationale for the previously observed inhibitory effects of lll-ACV on IPNS activity.  相似文献   

6.
F Jiang  J Peisach  L J Ming  L Que  V J Chen 《Biochemistry》1991,30(48):11437-11445
Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the stimulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, Aiso, for the remote 14N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that Aiso is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of the ESEEM of Cu(II)IPNS in D2O and H2O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.  相似文献   

7.
Isopenicillin N synthase (IPNS) catalyses a key step in the penicillin and cephalosporin biosynthetic pathway which involves the oxidative cyclisation of the acyclic peptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N. Based on crystallographic evidence from the Aspergillus nidulans IPNS crystal structure complexed with the substrate ACV (Roach et al. (1997) Nature 387, 827-830), we were able to provide mutational evidence for the critical involvement of the conserved R-X-S motif in ACV binding in IPNS. The crystal structure further implicated arginine-87 in the binding of the aminoadipyl portion of ACV. Thus, in this study, the site-directed mutagenesis of the corresponding arginine-89 in Cephalosporium acremonium IPNS (cIPNS) was performed to ascertain its role in cIPNS. Alteration of arginine-89 to five amino acids from different amino acid groups, namely lysine, serine, alanine, aspartate and leucine, was performed and no activity was detected in all the mutants obtained when enzyme bioassays were performed. Furthermore, the solubility of the mutants was considerably lower than the wild-type cIPNS after expression at 37 degrees C, but could be recovered when the expression temperature was lowered to 25 degrees C. This suggests that arginine-89 could be critical for the activity of cIPNS due to its involvement in ACV binding and the solubility of wild-type enzyme.  相似文献   

8.
Phospholipase D (PLD) of Streptomyces antibioticus was labelled with fluorescent-labelled substrate, 1-hexanoyl-2-{6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)-amino]hexanoyl}-sn-glycero-3-phosphocholine, when it was incubated with the substrate and the reaction followed by SDS/PAGE. Mutant enzymes lacking the catalytic activity were not labelled under the same conditions, indicating that labelling of the PLD occurred as the result of its catalytic action. This confirmed that the labelled protein was the phosphatidyl PLD intermediate. PLDs contain two copies of the highly conserved catalytic HxKxxxxD (HKD) motif. Therefore, two protein fragments were separately prepared with recombinant strains of Escherichia coli. One of the fragments was the N-terminal half of the intact PLD containing one HKD motif, and the other was the C-terminal half with the other motif. An active enzyme was reconstructed from these two fragments, and therefore designated fragmentary PLD (fPLD). When fPLD was subjected to the labelling experiment, only the C-terminal half was labelled. Therefore, it was concluded that the catalytic nucleophile that bound directly to the phosphatidyl group of the substrate was located on the C-terminal half of PLD, and that the N-terminal half did not contain such a nucleophile.  相似文献   

9.
10.
The conversion of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N is dependent upon the catalytic action of isopenicillin N synthase (IPNS), an important enzyme in the penicillin and cephalosporin biosynthetic pathway. Recent catalytic investigations on the conserved glutamine-230 in the bacterial Streptomyces jumonjinensis IPNS and the corresponding glutamine-234 in the fungal Cephalosporium acremonium IPNS showed contrasting results whereby the former was suggested to be essential for IPNS activity whereas the latter was found not to be so. In order to unravel these conflicting results, we report the site-directed mutagenesis investigation on the corresponding glutamine-230 in a third IPNS isozyme, which is the bacterial Streptomyces clavuligerus IPNS (scIPNS). IPNS enzymatic assays showed that catalytic activity of the mutant Q230L scIPNS was reduced but not eliminated. Moreover, the solubility of the mutant enzyme was also markedly reduced. Hence, we can conclude that glutamine-230 in scIPNS is not essential for catalysis and correspondingly in all IPNS.  相似文献   

11.
A kinetic model representing the pathway for the biosynthesis of penicillin by P. chrysogenum has been developed. The model is capable of describing the flux through the biosynthetic pathway, and model simulations correspond well with measurements of intermediates and end products. One feature of the present model structure is that it assumes the kinetics of the enzyme isopenicillin N synthetase (IPNS) to be first order with respect to the dissolved oxygen concentration in the range of 0.070 to 0.18 mM (25% to 70% saturation with air). Thus, it indicates the importance that molecular oxygen has on the rate of the reaction catalyzed by this enzyme, and consequently as an enhancer of the specific rate of penicillin production. Using the kinetic model, metabolic control analysis (MCA) of the pathway was performed. The determined flux control coefficients suggested that, during the production phase, the flux is controlled by IPNS as this enzyme becomes saturated with tripeptide delta-(L-alpha-amino-adipyl)-L-cysteinyl-D-valine (LLD-ACV). In the simulations, oxygen was shown to be a bottleneck alleviator by stimulating the rate of IPNS which prevents the accumulation of LLD-ACV. As a consequence of this stimulation, the rate-controlling step was moved to another place in the pathway. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
Isopenicillin N synthase (IPNS) from Cephalosporium acremonium contains 2 cysteine residues in positions 106 and 255 which are invariant in all IPNS sequences reported to date (Miller, J.R., and Ingolia, T.D. (1989) Mol. Microbiol. 3, 689-695). Although these residues have been postulated to play a role in catalysis (Samson, S.M., Chapman, J.L., Belagaje, R., Queener, S., and Ingolia, T.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5705-5709) as well as enzyme inactivation (Perry, D., Abraham, E.P., and Baldwin, J.E. (1988) Biochem. J. 255, 345-351) little information exists regarding their oxidation state and reactivity. In this paper, the functions of these cysteines have been addressed by chemical modification techniques in combination with site-directed mutagenesis. In the intact wild type protein, both cysteines are inert toward 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetic acid. However, Cys-106, but not Cys-255, can be slowly modified by N-ethylmaleimide, and its modification is partially blocked by the presence of a substrate analog inhibitor. Complete modification of both cysteines by sulfhydryl reagents requires unfolding of the protein but not the presence of a disulfide reducing agent. The thiol content of IPNS is shown to be the same before and after exposing the enzyme to substrate even though during catalysis the enzyme is rapidly inactivated. The impact on catalysis due to alteration of the cysteines has been assessed using three site-specific mutants: Cys-106----Ser, Cys-255----Ser, and Cys-106,255----Ser. These mutant proteins have been purified as apoenzymes with the nature of the mutation verified by peptide mapping. The stoichiometry of metal required for activity remains as one equivalent of Fe2+/mol of enzyme in the mutants as in wild type IPNS. Compared with wild type, Cys-255----Ser shows a reduction in Vmax by 33%, and an increase in Km by 1.4-fold, while Cys-106----Ser and Cys-106,255----Ser, which have identical kinetic properties, exhibit a decrease in Vmax by 63% but an elevation of Km by 14-fold. The data presented demonstrate that 1) both cysteines are free thiols; 2) Cys-106 is more exposed than Cys-255; 3) substrate-induced inactivation is not caused by cysteine modification; 4) neither cysteine is absolutely essential for bond making or breaking events during catalysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Isopenicillin N synthase (IPNS) catalyzes double ring closure of the tripeptide (L-alpha-amino-delta-adipoyl)-L-cysteinyl-D-valine (ACV) to form the beta-lactam and thiazolidine rings of penicillin-type antibiotics. Our previous spectroscopic study using IPNS from Cephalosporium acremonium expressed in Escherichia coli [Chen, V. J., Orville, A. M., Harpel, M. R., Frolik, C. A., Surerus, K. K., Münck, E., & Lipscomb, J. D. (1989) J. Biol. Chem. 264, 21677-21681] indicated that a thiolate enters the coordination of the essential active site Fe2+ when ACV binds to IPNS. The presence of an Fe-S bond in the IPNS.ACV complex is confirmed by EXAFS data presented in the preceding paper [Scott, R. A., Wang, S., Eidsness, M. K., Kriauciunas, A., Frolik, C. A. & Chen, V. J. (1992) Biochemistry (preceding paper in this issue)]. However, these studies leave unclear whether the coordinating thiolate derives from ACV or an endogenous cysteine. Here, we examine the spectroscopic properties of three genetically engineered variants of IPNS in which the only two endogenous cysteines are individually and collectively replaced by serine. The EPR, M?ssbauer, and optical spectra of the mutant enzymes and their complexes with ACV, NO, or both ACV and NO are found to be essentially the same as those of wild-type IPNS, showing that the endogenous cysteines are not Fe2+ ligands in any of these complexes. Spectral quantitations show that the double Cys----Ser mutation decreases the affinity of the enzyme for ACV by about 6-fold, suggesting that the endogenous cysteines influence the structure of the substrate binding pocket remote from the iron. Thiolate complexation of the Fe2+ is also examined using ACV analogues. All ACV analogues examined in which the cysteinyl thiol moiety is unaltered are found to bind to the IPNS.NO complex to give optical and EPR spectra very similar to those of the ACV complex. In contrast, analogues in which the cysteinyl moiety of ACV is replaced with serine or cysteic acid fail to elicit the characteristic EPR and optical features despite the fact that they are bound with reasonable affinity to the enzyme. These results demonstrate that the thiolate of ACV coordinates the Fe2+. The EPR spectra of both the IPNS.NO and IPNS.ACV.NO complexes are broadened for samples prepared in 17O-enriched water, showing that water (or hydroxide) is also an iron ligand in each case. Thus, the Fe2+ coordination of the IPNS.ACV.NO complex accommodates at least three exogenous ligands.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Isopenicillin N synthase (IPNS), a non-heme iron oxidase central to penicillin and cephalosporin biosynthesis, catalyzes an energetically demanding chemical transformation to produce isopenicillin N from the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV). We describe the synthesis of two cyclopropyl-containing tripeptide analogues, delta-(l-alpha-aminoadipoyl)-l-cysteinyl-beta-methyl-d-cyclopropylglycine and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-cyclopropylglycine, designed as probes for the mechanism of IPNS. We have solved the X-ray crystal structures of these substrates in complex with IPNS and propose a revised mechanism for the IPNS-mediated turnover of these compounds. Relative to the previously determined IPNS-Fe(II)-ACV structure, key differences exist in substrate orientation and water occupancy, which allow for an explanation of the differences in reactivity of these substrates.  相似文献   

15.
A fluorescamine assay for the detection of a spore-lytic enzyme from Clostridium perfringens is described. The substrate is prepared by treatment of cortical fragments with fluorescamine which reacts with amino terminal groups in the peptidoglycan which are not cross-linked, presumably diaminopimelic acid. Treatment of the labelled substrate with lytic enzymes results in the release of soluble fluorescent products which can be easily measured in a basic fluorometer. The assay is very sensitive, inexpensive and reproducible. As little as 1 μg of lysozyme can be detected by this assay.  相似文献   

16.
Penicillium chrysogenum is an important producer of penicillin antibiotics. A key step in their biosynthesis is the oxidative cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N by the enzyme isopenicillin N synthase (IPNS). bis-ACV, the oxidized disulfide form of ACV is, however, not a substrate for IPNS. We report here the characterization of a broad-range disulfide reductase from P. chrysogenum that efficiently reduces bis-ACV to the thiol monomer. When coupled in vitro with IPNS, it converts bis-ACV to isopenicillin N and may therefore play a role in penicillin biosynthesis. The disulfide reductase consists of two protein components, a 72-kDa NADPH-dependent reductase, containing two identical subunits, and a 12-kDa general disulfide reductant. The latter reduces disulfide bonds in low-molecular-weight compounds and in proteins. The genes coding for the reductase system were cloned and sequenced. Both possess introns. A comparative analysis of their predicted amino acid sequences showed that the 12-kDa protein shares 26 to 60% sequence identity with thioredoxins and that the 36-kDa protein subunit shares 44 to 49% sequence identity with the two known bacterial thioredoxin reductases. In addition, the P. chrysogenum NADPH-dependent reductase is able to accept thioredoxin as a substrate. These results establish that the P. chrysogenum broad-range disulfide reductase is a member of the thioredoxin family of oxidoreductases. This is the first example of the cloning of a eucaryotic thioredoxin reductase gene.  相似文献   

17.
The occurrence, localization, and extraction of isopenicillin N-synthase (IPNS) were investigated in the gram-negative low-level beta-lactam producer Flavobacterium sp. strain SC 12.154, which forms deacetoxycephalosporin and excretes the cephabacin 7-formamidocephalosporin. IPNS was detected with anti-IPNS antibodies raised against the Cephalosporium acremonium enzyme. The flavobacterium enzyme, whose molecular mass (38 kilodaltons) and cofactor requirements resemble those of the fungal and Streptomyces enzymes, is formed at the transition from growth to the stationary phase. It was extracted into the polyethylene glycol phase of a polyethylene glycol-Ficoll-dextran three-phase system and was purified by quaternary aminoethyl ion-exchange chromatography, gel filtration, covalent chromatography on cystamine-Sepharose, and fast-protein liquid chromatography on Mono Q. The enzyme was characterized with respect to sulfhydryl requirement, inhibition by disulfides and metal ions, pH and temperature dependence, and stimulation by polyethylene glycol and low Triton X-100 concentrations, as well as by several amino acids, including alpha-aminoadipic acid and cysteine. The Km for alpha-aminoadipyl-cysteinyl-D-valine was 0.08 mM. An inactive membrane-associated form of IPNS was detected together with a beta-lactamase active on isopenicillin N. The system has been suggested as a model for the study of endogenous functions of beta-lactams in bacteria.  相似文献   

18.
When the level of dissolved oxygen was increased to saturation in defined media fermentations of Streptomyces clavuligerus, the total duration of activity of the penicillin ring cyclization enzyme, isopenicillin N synthase (IPNS), was extended by at least 20 h; however, no increase in the stability of the ring expansion enzyme, desacetoxycephalosporin C synthase (DAOCS), was observed. Consequently, the conversion of the excreted intermediate penicillin N to cephamycin C was 15-20% less efficient at this high oxygen concentration. The increased dissolved oxygen level also led to the complete loss of IPNS and DAOCS activities for 4 h during the period of fastest growth, and the rate of specific cephamycin C production fell to zero. A several hundred fold increase in the level of iron in the defined media resulted in a sixfold improvement in the rate of specific cephamycin C production after 60 h fermentation. This increased rate appeared to be due to an elevation in the in vivo activities of a number of the cephamycin biosynthetic enzymes, particularly those catalysing later pathway steps.  相似文献   

19.
The isopenicillin N synthetase (IPNS) gene from Streptomyces clavuligerus was isolated from an Escherichia coli plasmid library of S. clavuligerus genomic DNA fragments using a 44-mer mixed oligodeoxynucleotide probe. The nucleotide sequence of a 3-kb region of the cloned fragment from the plasmid, pBL1, was determined and analysis of the sequence showed an open reading frame that could encode a protein of 329 amino acids with an Mr of 36,917. When the S. clavuligerus DNA from pBL1 was introduced into an IPNS-deficient mutant of S. clavuligerus on the Streptomyces vector pIJ941, the recombinant plasmid was able to complement the mutation and restore IPNS activity. The protein coding region of the S. clavuligerus IPNS gene shows about 63% and 62% similarity to the Cephalosporium acremonium and Penicillium chrysogenum IPNS nucleotide sequences, respectively, and the predicted amino acid sequence of the encoded protein showed about 56% similarity to both fungal sequences.  相似文献   

20.
Application of immunoassay to biosensors for use in the point-of-care setting ideally requires immunoassay without separation steps and with small volumes of both sample and reagents. The suitability of cloned enzyme donor immunoassay (CEDIA), one of a few homogeneous immunoassays available, was investigated for application to biosensors. This method is based on the bacterial enzyme beta-galactosidase, which has been genetically engineered by others into two inactive fragments, enzyme donor (ED) and enzyme acceptor (EA). Association of the ED and EA fragments in the assay results in formation of active enzyme, which acts on substrate to generate a detectable signal. Sensitivity of commercially available CEDIA kits were compared, with respect to the sample and reagent volumes, using three different signal generation processes. The CEDIA kit for valproic acid and three substrates, a colorimetric (chlorophenol red-beta-D-galactopyranoside), a chemiluminescent (Lumi-Gal 530), and a bioluminescent (Beta-Glo Assay System), were employed in the study. Our results indicate that the high sensitivity of the bioluminogenic substrate, D-luciferin-O-beta-galactopyranoside, with short assay time and small volumes of sample and reagents required for the assay, simple handling, and relatively low expense, make this substrate, together with CEDIA, suitable for application to biosensors intended for drug and metabolite monitoring in the point-of-care setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号