首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This communication describes a simple method for synthesizing cleavable bifunctional imido esters of different chain lengths. These reagents, which form covalent crosslinks between lysine residues of proteins, contain a disulfide bond which is cleaved under mild conditions by reducing agents such as 2-mercaptoethanol. The reagents are synthesized via the dithiobisnitrile which is prepared in high yield by reacting the appropriate omega-activated nitrile with sodium polysulfide and is then converted quantitatively to the diimidate. Three such reagents were prepared: dimethyl 3.3'-dithiobispropionimidate, dimethyl 4,4'-dithiobisbutyrimidate, and dimethyl 6-6'-dithiobiscaproimidate. The first was synthesized from acrylonitrile, and the others from the appropriate omega-bromonitriles. Experiments with the bispropionimidate and a test protein, pancreatic ribonuclease, have shown the reagent to be effective in producing multimeric crosslinked complexes, from which monomeric proteins can recovered after treatment with 2-mercaptoethanol. The reagents are suitable for studies of ribosomal structure.  相似文献   

2.
Isolated uncoupling protein (UCP) can be cross-linked, by various disulfide-forming reagents, to dimers. The best cross-linking is achieved with Cu2+-phenanthroline oxidation. Because cross-linking is independent of UCP concentration and prevented by SDS addition, a disulfide bridge must be formed between the two subunits of the native dimer. Cross-linking is prevented by SH reagent and reversed by SH-reducing reagents. In mitochondria, cross-linking of UCP with disulfide-forming agents is even more efficient than in isolated state. It proves that UCP is a dimer in mitochondria, before isolation. Disulfide-bridge formation does not inhibit GTP-binding to UCP. Cross-linked UCP re-incorporated in proteoliposomes either before or after cross-linking fully retains the H1-transport function. Rapid cross-linking by membrane impermeant reagents indicates a surface localization of the C-terminus in soluble UCP and projection to the outer surface in mitochondria. Intermolecular disulfide-bridge formation in a dimer requires juxtaposition of identical cysteines at the twofold symmetry axis. A rigid juxtaposition of cysteines is unlikely, unless intended for a native disulfide bridge. The absence of such a bridge in UCP suggests that juxtaposition of cysteines is generated by high mobility. In order to localize the cysteine involved, cross-linked UCP was cleaved by BrCN. The CB-7 C-terminal peptide, which contains cysteines at positions 287 and 304, disappears. Limited trypsinolytic cleavage, previously shown to occur at Lys-292, removed cross-linking in UCP both in the solubilized and mitochondrially bound state. The cleaved C-terminal peptide of 11 residues contains only cystein-304 which, thus, should be the only one (out of 7 cysteines in UCP) involved in the S-S bridge formation. Obviously, the C-terminal location of the cysteine, because of its high mobility, permits juxtapositioning for cross-linking. This agrees with predictions from hydrophobicity analysis that the last 14 residues in UCP protrude from the membrane.  相似文献   

3.
A series of alkyl phenyl selenides has been incubated with the fungi Aspergillus niger, Aspergillus foetidus, Mortierella isabellina, and Helminthosporium sp. These fungi oxidize the corresponding sulfides to sulfoxides efficiently, but in no case was any evidence obtained that the microbial oxidation of selenide to selenoxide was occurring. The fate of methyl phenyl selenide following incubation with M. isabellina was investigated using methyl-14C-labeled substrate, and by quantitative selenium analysis. These techniques indicate that the selenide is taken into the fungal cell efficiently and that some metabolic cleavage of the selenium-methyl carbon bond may occur.  相似文献   

4.
The interaction between cytochrome P-450scc and adrenodoxin has been studied using cleavable cross-linking reagents and limited trypsinolysis. The data obtained indicate that the site responsible for adrenodoxin binding is located on the NH2-terminal fragment F1 of cytochrome P-450scc.  相似文献   

5.
A specific dimer of the 37,000-dalton, major outer membrane protein was demonstrated by chemical cross-linking with cleavable reagents.  相似文献   

6.
Rat liver and mouse ascitic tumour ribosomal proteins are cross-linked selectively in good yield with the newly developed cleavable heterobifunctional reagents 2-(4-hydroxy-2-maleimidophenylazo)benzoic acid N-hydroxysuccinimide ester (reagent A) and 4-(4-hydroxy-3-maleimidophenylazo)[carboxyl-14C]benzoic acid N-hydroxysuccinimide ester (reagent B). The primary function of the reagents, an N-aroylated maleimide, binds quantitatively at low pH to accessible cysteine groups. After eliminating the free reagent, the pH is increased to make the secondary function, a juxtanuclear aroyl ester, reactive against neighboring amino groups, essentially lysine. The spacer, 4-phenylazophenol, is readily cleaved by reduction with dithionite. The ranges of cross-linking of the two reagents are approx. 8 and 12 A, respectively. Using the radiolabelled reagent B the secondarily attached protein (and its contact sequence) is made recognizable even in trace amounts. The order of binding of the interacting proteins is thereby established. The two reagents produce similar, but not identical, patterns of selective cross-linking. The following protein complexes are readily observed after conventional staining. With reagent A: S8-S11, L4-L14, L4-L18, L6-L29 and L21-L18a. With the radioactive, longer-range reagent B: L4 ---- L13a, L4 ---- L18, L4 ---- L18a, L4 ---- L26, L6 ---- L29, L14 ---- L13a, L21 ---- L18a and L27 ---- L30 (arrows indicating the direction of binding). Ternary and quaternary complexes are also obtained, especially of the large protein L4. With both reagents a protein designated L6' is cross-linked to L23. The predominant cross-linked complexes can be obtained on a preparative scale for isolation and characterization of contact sequences by optional fragmentation and fractionation methods.  相似文献   

7.
A new procedure for the photochemical labeling of peptides and for the production of cleavable cross-links between protein molecules is given. This method is mediated through the catalytic action of the enzyme guinea pig liver transglutaminase. Each of the labeling and cross-linking reagents described here is an amine substrate for transglutaminases and, because of the narrow specificity of these enzymes, is introduced covalently only at the gamma-carboxamide group of available peptide-bound glutamine residues. Cross-linking results either solely through the action of the enzyme in the case of a diamine substrate, or by subsequent photolysis in the case of photosensitive amine substrates. Cleavable bonds in several of the substrates are disulfide or vicinal hydroxyl groups. The validity of the procedure is demonstrated by the preparation of photosensitive derivatives of substance P and glucagon 1-6 and in the cleavable covalent cross-linking of guanidinated beta-casein.  相似文献   

8.
The acetylcholine receptor from Torpedo californica electric tissue consisting of polypeptide chains of molecular weight 42000 (+/- 2000) is part of a protein complex. Cross-linking experiments with bifunctional reagents have shown that this complex has possibly a pentameric structure with a molecular weight of 270000 (+/- 30000). Besides the receptor subunit (alpha-chain), at least three further classes of polypeptide chains are part of the complex: beta (Mr 48000), gamma (Mr 62000) and delta (Mr 68000). This can be shown by cross-linking the proteins extracted from receptor-enriched membrane fractions with a cleavable reagent: From the 270000 molecular weight particle the four predominant polypeptide chains of the membrane, alpha, beta, gamma, and delta, can be obtained. The gamma-polypeptide chains appear to form a dimer connected by an inter-chain disulphide bridge.  相似文献   

9.
A N Rudenok  S V Konev 《Biofizika》1991,36(2):291-293
It is shown that cleavable cross-linking reagents reversibly inhibit proton translocation with concomitant stimulation of respiration in the mitochondria respiratory chain. It is concluded that a definite level of dynamic mobility of proteins is needed for proton translocation.  相似文献   

10.
Reversible immobilization techniques which allow for multiple use of the carrier are relevant for applications, such as enzymatic microreactors, biosensors with specific setups and for expensive carriers such as superparamagnetic particles. The activity of immobilized enzymes reduces with time, so that the introduction of fresh immobilized enzyme becomes necessary. Thus, methods for reversible immobilization and multiple carrier reuse can help to reduce purchase costs and facilitate reactor construction. In this work, we present a method that makes use of the reduction and oxidation of cystamine, a cleavable linker with disulfide bond and amine functionality. For a proof of principle, α-chymotrypsin was immobilized on polyethylene glycol with terminal epoxy groups using cystamine as a crosslinker. The enzyme was highly active and could be used in repeated cycles. After the enzymatic reaction was demonstrated, α-chymotrypsin was cleaved off the particle by reducing agents. The resulting thiols on the particle surface were oxidized to disulfides by means of cysteamine, the reduction product of cystamine. This way, an almost complete oxidation of surface thiols with cysteamine was possible, restoring amine functionalization for further reactions. Reduction and oxidation were repeated several times without a decrease in the extent of amine coupling. Finally, immobilization of α-chymotrypsin could be repeated with results comparable to first run.  相似文献   

11.
The arrangement of protein I in the outer membrane of Escherichia coli was investigated by cross-linking whole cells, isolated cell wall, protein-peptidoglycan complexes, and protein I released from peptidoglycan with NaCl. Both cleavable azide cross-linkers and imidoester reagents were used. The data presented suggest that protein I exists in the outer membrane as a trimer.  相似文献   

12.
New heterobifunctional cross-linking reagents that possessed a photoactive terminus, an electrophilic terminus, and a linking arm between the two termini that had a radiolabeled, enzymatically cleavable bond were synthesized. In a model study, succinimidyl N-[N'-(4-azidobenzoyl)tyrosyl]-beta-alanate (16A) was coupled to n-butylamine (a Lys surrogate), iodinated, and cleaved with chymotrypsin in the presence of tyrosylamide to afford the desired adduct (N-(N'-(4-azidobenzoyl)-3-iodotyrosyl)tyrosinamide, thereby demonstrating the feasibility of the enzymatic cleavage. In a biochemical study, succinimidyl N-[N'-(3-azido-5-nitrobenzoyl)tyrosyl]-beta-alanate (16C) was coupled to Lys-75 of calmodulin (CaM), and the radioiodinated monoadduct was successfully photo-cross-linked, in a calcium-dependent manner, to the human erythrocyte plasma membrane Ca2+,Mg2(+)-ATPase and to a synthetic fragment (M13) containing the CaM-binding region of myosin light-chain kinase. In the latter case, densitometry readings indicated 20% cross-linking efficiency.  相似文献   

13.
The synthesis of a new class of cleavable crosslinking reagents is described. The primary function, a ring-substituted maleimide, binds selectively and very efficiently at low pH to cysteine-containing protein sequences. At increased pH the secondary function, an N-hydroxysuccinimide ester of a ring-attached carboxyl group, becomes reactive against adjacent amino groups. The spacer, azobenzene, is readily cleaved by reduction with dithionite provided that a hydroxyl group is included in the ring system. By altering the relative positions of the reactive groups the range of crosslinking can be varied within approximately 8-12 A. After degradation of the crosslinked proteins by optional methods the contact sequences are readily identified by diagonal electrophoresis. By radiolabeling the carboxyl group of the reagent the order of binding of the proteins can be established, and the secondarily attached protein and its contact sequences can be recognized even in trace amounts. The usefulness of the reagents is illustrated by the selective, high-efficiency crosslinking of mammalian ribosomal proteins and the identification of their contact fragments as obtained by CNBr degradation.  相似文献   

14.
Calf brain plain synaptic vesicle proteins have been cross-linked with bis[2-(succinimidooxycarbonyloxy)ethyl] sulfone, a homobifunctional, cleavable reagent, as well as with N-hydroxysuccinimidyl 4-azidobenzoate, a photosensitive, heterobifunctional reagent. These results demonstrate the generality of a recent report that synaptic vesicle proteins can be cross-linked, in contrast to a prior report that no cross-linking could be observed. The reagents gave some differences in the proteins that were preferentially cross-linked. A protein at Mr = 173 000, which comigrates with clathrin, is present in the plain synaptic vesicle fraction and appears to be involved in cross-linking. A high degree of association and structural organization of synaptic vesicle proteins is suspected, since extensive cross-linking of most synaptic vesicle proteins with high-molecular-mass proteins, which are probably structural in nature, is observed. A protein with an Mr of 249 000 is specifically cross-linked to a protein of Mr 42 000, probably actin, suggesting that the 249 000-Mr protein may be a spectrin-like molecule. The present results suggest that synaptic vesicles may be organized by a spectrin-like matrix similar to that observed in erythrocytes and other cells.  相似文献   

15.
16.
Activity-based probes (ABPs) that specifically target subsets of related enzymatic proteins are finding increasing use in proteomics research. One of the main applications for these reagents is affinity isolation of probe-labeled targets. However, the use of cheap and efficient biotin affinity tags on ABPs can be problematic due to difficulty in release of captured proteins. Here we describe the evaluation of activity-based probes carrying a chemically cleavable linker that allows selective release of probe-labeled proteins under mild elution conditions that are compatible with mass spectrometric analysis. Specifically, we compare results from standard on-bead digestion of probe-labeled targets after affinity purification with the results obtained using chemoselective cleavage. Results are presented for multiple APBs that target both serine and cysteine proteases. These results highlight significant improvements in the quality of data obtained by using the cleavable linker system.  相似文献   

17.
Treatment of Chlamydomonas reinhardtii thylakoids with cross-linking reagents including glutaraldehyde causes polymerization of all thylakoid polypeptides, but not of the reaction center II polypeptide D1 unless the thylakoids are presolubilized by octyl beta-D-glucoside (Adir, N., and Ohad, I. (1986) Biochim. Biophys. Acta 850, 264-274). The results presented here show that this is a general property of D1 as it can be demonstrated in thylakoids of cyanophytes, Dasicladaceae, green algae, and C3 and C4 plants. Solubilization of the membranes by ionic detergents, deoxycholate, lauryl sucrose, or dodecyl beta-D-maltoside is not effective in inducing cross-linking of the D1 polypeptides by glutaraldehyde. The most effective alkyl glucosides were those with 7-9 carbon alkyl chains. The same behavior toward glutaraldehyde was exhibited by the unprocessed D1 precursor and by the palmitoylated D1 protein. Based on the refractility of the D1 protein to cross-linking reagents, a procedure was developed for its isolation from cross-linked thylakoids by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Isolated D1 retained its behavior toward cross-linking by glutaraldehyde and generated tryptic fragments similar to those obtained following trypsin treatment of intact thylakoids. Denaturation of isolated D1 protein by acetone facilitates cross-linking by glutaraldehyde and extensive degradation by trypsin. The photosystem II polypeptides are differentially cross-linked with increasing concentrations of glutaraldehyde, the most susceptible being the 28- and 23-kDa components of the light-harvesting chlorophyll a-b protein complex and the core complex 44- and 51-kDa polypeptides, and the least affected being the cytochrome b559, the D2 protein, and a 24-kDa component of the light-harvesting chlorophyll a-b protein complex. These results reflect the relative position and interaction of the photosystem II polypeptides within the complex and suggest that strong and specific hydrophobic interactions may be responsible for the tight and stable conformation of D1. This may be based mostly on the conserved amino acid sequences of D1 and possibly plays a role in the process of D1 integration and removal from the reaction center during its light-dependent turnover.  相似文献   

18.
Syncollin is a pancreatic zymogen granule protein that was isolated through its ability to bind to syntaxin. Here we show that syncollin has a cleavable signal sequence and can be removed from granule membranes by washing with sodium carbonate. When membranes were subjected to Triton X-114 partitioning, syncollin was found predominantly in the aqueous phase, indicating that it is not sufficiently hydrophobic to be embedded in the membrane. Syncollin has intramolecular disulfide bonds and was accessible to water-soluble cross-linking and biotinylating reagents only when granules were lysed by sonication. These results indicate that syncollin is tightly bound to the luminal surface of the granule membrane. In situ, syncollin was resistant to proteases such as trypsin. When granule membranes were solubilized in ionic detergents such as deoxycholate, this trypsin resistance was maintained, and syncollin migrated on sucrose density gradients as a large (150 kDa) protein. In contrast, in non-ionic detergents such as Triton X-100, syncollin became partially sensitive to trypsin and behaved as a monomer. Syncollin in alkaline extracts of granule membranes was also monomeric. However, reduction of the pH regenerated the oligomeric form, which was insoluble. We conclude that syncollin exists as a homo-oligomer and that its ability to self-associate can be reversibly modulated via changes in pH. In light of our findings, we reassess the likely role of syncollin in the pancreatic acinar cell.  相似文献   

19.
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by exerting antioxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (which preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis, and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and with lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid redistribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions.  相似文献   

20.
The arrangement of proteins in the outer membrane of Neisseria gonorrhoeae was investigated through the use of cleavable chemical cross-linking reagents and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cross-linking of isolated outer membranes yielded dimers and trimers of the major outer membrane protein. In addition, data were obtained suggesting that a stable interaction exists between the major protein I and protein II, the second most prevalent protein in the gonococcal outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号