首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleven rats were kept at an ambient temperature of 33.5 degrees C (HC) for 4-5 consecutive days, 9 additional rats were subjected to 33.5 degrees C for approximately 5 h daily (HI) for the same period, and 12 controls (Cn) were kept at 24 degrees C. After the exposure, the rats were placed in a direct calorimeter, where the wall temperature was set at 24 degrees C, and subjected to direct internal heating (6.2 W.kg-1, 30 min) through an intraperitoneal electric heater. After the first heat load and when thermal equilibrium had been attained again, the rats were subjected to indirect external warming by raising the jacket water temperature surrounding the calorimeter from 24.0 to 38.8 degrees C in 90 min. Hypothalamic (Thy) and colonic temperatures (Tco), evaporative and nonevaporative heat loss, and metabolic heat production (M) before the acute heat loads did not differ among the groups. During heat loads, the latent times for the onsets of the rises in tail skin temperature and evaporation were significantly longer, and Thy and Tco at the start of increases in heat losses tended to be higher, in the HC than in the Cn. M significantly decreased in all groups, but the magnitude and duration of reduction in M were significantly greater in the HC than in the Cn. There were no differences between the thermoregulatory responses to heat loads of the HI and Cn. These results suggest that in HC the threshold core temperature for heat loss response and the upper critical temperature have already shifted to a higher level and that HC respond to heat stress more strongly with the reduction of M than Cn. Short-term intermittent heat exposure had little effect on the thermoregulatory mechanisms in rats.  相似文献   

2.
The present study examined the heat loss response of heat-acclimated rats to direct body heating with an intraperitoneal heater or to indirect warming by elevating the ambient temperature (Ta). The heat acclimation of the rats was attained through exposure to Ta of 33 or 36 degrees C for 5 h daily during 15 consecutive days. Control rats were kept at Ta of 24 degrees C for the same acclimation period. Heat acclimation lowered the body core temperature at Ta of 24 degrees C, and the core temperature level was lowered as acclimation temperature increased. When heat was applied by direct body heating, the threshold hypothalamic temperature (Thy) for the tail skin vasodilation was also lower in heat-acclimated rats than in the control rats. However, the amount of increase in Thy from the resting level to the threshold was the same in all three groups. When heat was applied by indirect warming, threshold Thy was slightly higher in heat-acclimated than in control rats. The amount of increase in Thy from the resting level to the threshold was significantly greater in heat-acclimated rats. In addition, Ta and the skin temperature at the onset of skin vasodilation were significantly higher in heat-acclimated rats. The results indicate that heat-acclimated rats were less sensitive to the increase in skin temperature in terms of threshold Thy. The gain constant of nonevaporative heat loss response was assessed by plotting total thermal conductance against Thy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Male Wistar rats, initially maintained at an ambient temperature (Ta) of 23.8 degrees C, were subjected to one of seven different heat acclimation schedules under a 12:12-h light-dark cycle (lights on at 0600 h). Two groups of rats were exposed to Ta of 32.4 degrees C all day for 5 (HC5) or 10 (HC10) days. The other four groups were exposed to Ta of 32.8 degrees C for 5 h/day during the last half of the dark phase for 5 (NI5) or 10 (NI10) consecutive days or during the last half of the light phase for 5 (DI5) or 10 (DI10) consecutive days. Control rats (C) were kept at 23.8 degrees C throughout the experiment. Hypothalamic temperature (Thy) was measured every 5 min with a chronically implanted thermocouple from 1 day before the beginning to 2 days after the end of the heat acclimation periods. During the heat acclimation periods, daily mean Thy rose significantly in HC5 and HC10 rats but decreased significantly in NI5 and NI10 rats. Daily mean Thy did not change in C, DI5, and DI10 rats. Thy in HC10 rats sharply decreased at the end of the heat acclimation periods and remained at low levels for approximately 3 h. On the 2nd postacclimation day, however, mean Thy returned and remained at a significantly higher level. In NI10 rats, the mean Thy in the postacclimation period was significantly lower than the preacclimation values. No such changes in mean Thy were observed in DI10 rats. Five-days of heat exposure had little effect on the postacclimation Thy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
FOK is an inbred rat strain with a genotypic adaptation to hot environments. The present study investigated the mechanism of the high heat tolerance of the FOK rat. Male FOK and WKAH rats were used. They were loosely restrained and placed individually in a direct calorimeter with an ambient temperature of 24°C. Their hypothalamic temperature, evaporative and nonevaporative heat loss and heat production were measured. After thermal equilibrium had been attained, the rats were warmed for 30 min with a chronically implanted intraperitoneal electric heater(internal heating). At least 90 min after the heating, the jacket water temperature surrounding the calorimeter chamber was gradually raised from 24°C to 36°C in 80 min (external warming). During the internal heating, changes in the thermoregulatory parameters did not differ between the groups. During the external warming, the evaporative heat loss of the FOK rat was significantly greater than that of the WKAH rat, while changes in nonevaporative heat loss and heat production did not differ between the groups. The results suggest that in the FOK rat, the improved heat tolerance is attributable to an enhanced evaporative heat loss response, but not to a facilitation of nonevaporative heat loss or of metabolic depression. Received: 8 March 1999 / Accepted: 14 July 1999  相似文献   

5.
Intermittent hypoxia (IH) conditioning minimizes neurocognitive impairment and stabilizes brain mitochondrial integrity during ethanol withdrawal (EW) in rats, but the mitoprotective mechanism is unclear. We investigated whether IH conditioning protects a key mitochondrial enzyme, cytochrome c oxidase (COX), from EW stress by inhibiting mitochondrially directed apoptotic pathways involving cytochrome c, Bax, or phosphor-P38 (pP38). Male rats completed two cycles of a 4-wk ethanol diet (6.5%) and 3 wk of EW. An IH program consisting of 5-10 bouts of 5-8 min of mild hypoxia (9.5-10% inspired O(2)) and 4 min of reoxygenation for 20 consecutive days began 3 days before the first EW period. For some animals, vitamin E replaced IH conditioning to test the contributions of antioxidant mechanisms to IH's mitoprotection. During the second EW, cerebellar-related motor function was evaluated by measuring latency of fall from a rotating rod (Rotarod test). After the second EW, COX activity in cerebellar mitochondria was measured by spectrophotometry, and COX, cytochrome c, Bax, and pP38 content were analyzed by immunoblot. Mitochondrial protein oxidation was detected by measuring carbonyl contents and by immunochemistry. Earlier IH conditioning prevented motor impairment, COX inactivation, depletion of COX subunit 4, protein carbonylation, and P38 phosphorylation during EW. IH did not prevent cytochrome c depletion during EW, and Bax content was unaffected by EW ± IH. Vitamin E treatment recapitulated IH protection of COX, and P38 inhibition attenuated protein oxidation during EW. Thus IH protects COX and improves cerebellar function during EW by limiting P38-dependent oxidative damage.  相似文献   

6.
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were examined. Male rats consumed dextrin or 6.5% (wt/vol) ethanol for 35 days. During the last 20 days, rats were treated with repetitive (5-8 per day), brief (5-10 min) cycles of hypoxia (9.5-10% inspired O2) separated by 4-min normoxia exposures. Cerebellum, cortex, and hippocampus were biopsied on day 35 of the diet or at 24 h of EW. Superoxide and protein carbonyl contents in tissue homogenates and absorbance decline at 540 nm in mitochondrial suspensions served as indicators of oxidative stress, protein oxidation, and PTP opening, respectively. Although IH altered neither ethanol consumption nor blood ethanol concentration, it sharply lowered the severity of EW signs including tremor, tail rigidity, and startle response. Compared with dextrin and ethanol per se, in the three brain regions, EW increased superoxide and protein carbonyl contents and accelerated PTP opening in a manner ameliorated by IH. Administration of antioxidant N-acetylcysteine throughout the IH program abrogated the reductions in EW signs and superoxide content, implicating IH-induced ROS as mediators of the salutary adaptations. We conclude that IH conditioning during chronic ethanol consumption attenuates oxidative damage to the brain and mitigates behavioral abnormalities during subsequent EW. IH-induced ROS may evoke this powerful protection.  相似文献   

7.
The purpose of this study was to test the hypothesis that the cardiovascular-sympathetic nervous system adjustments during nonexertional heat stress are exaggerated in senescent (S, 24 mo) vs. mature (M, 12 mo) conscious unrestrained Fischer 344 rats. During two separate trials (48 h apart), each animal was exposed to an ambient temperature (Ta) of 42 degrees C until a colonic temperature (Tco) of 41 degrees C was attained and then cooled at a Ta of 26 degrees C until Tco returned to the initial control level. Trial 1: heart rate (HR), mean arterial blood pressure (MAP), and arterial plasma concentrations of norepinephrine (NE), epinephrine (E), and lactate (La) were similar between the S and M groups during the baseline (control) period. The absolute increases in HR, MAP, NE, and E from the control period to the end of heating were of similar magnitudes between groups; however, La increased more in the S than M animals (P less than 0.05). During recovery, the declines toward control levels for all variables were similar or even more rapid in the S vs. M animals (P less than 0.05). Trial 2: the changes in HR and MAP during heating were similar to those observed in trial 1 in both groups. Generally, NE and E control levels were elevated in both groups compared with those in trial 1. The absolute increases in NE during heating were similar to trial 1 in both groups, whereas E increased to a greater extent than in trial 1 in the S animals (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Endocrine and thermoregulatory responses were studied in male rats exposed to heat (32.5 +/- 0.1 degrees C) from acclimation temperatures of either 24.5 +/- 0.1 degrees C or 29.2 +/- 0.1 degrees C. After 1 hr in the heat, evaporative water loss and tail skin temperature changes in the 24.5 degrees C acclimated rats were greater than in the 29.2 degrees C acclimated rats; both groups displayed similar changes in metabolic rate and rectal temperature. At the respective acclimation temperatures, 29.2 degrees C rats displayed lowered plasma thyroid hormones, elevated beta-endorphin-like immunoreactivity (beta-END-LI) in the plasma, neurointermediate and anterior lobes of the pituitary gland, and no change in plasma corticosterone levels compared to 24.5 degrees C rats. After exposure to 32.5 degrees C for 1 hr, both groups of rats maintained similar plasma corticosterone levels; however, only the 24.5 degrees C group increased plasma thyroxine and beta-END-LI. These data suggest that beta-endorphin may be involved in body temperature regulation during acclimation to elevated environmental temperatures.  相似文献   

9.
ABSTRACT. Adult Gasterophilus intestinalis (De Geer) frequently produce a 'buzzing' sound while stationary. This buzzing was always associated with heat production in the fly's thorax, although sometimes heat production occurred without audible buzzing. Thoracic temperature (Tth) could be elevated by as much as 12°C. As buzzing continued, the Tth rose, the pitch of the buzzing sound increased, the frequency being directly proportion to Tth. Periods of buzzing were usually, but not always, terminated by attempted flight. Often, flies showed long episodes of cycling, when periods of continuous buzzing were interspersed with periods of rest. Such cycling maintained Tth above ambient temperature for long periods. During sustained tethered flight, flies were able to maintain Tth at high, steady values for long periods. Heat loss from the thorax is restricted by a dense covering of hair, and also by active control over heat transfer between thorax and abdomen.  相似文献   

10.
The effect of central angiotensin AT(1) receptor blockade on thermoregulation and water intake after heat exposure was investigated. Rats were placed in a chamber heated to 39 +/- 1 degrees C for 60 min and then returned to their normal cage (at 22 degrees C), and water intake was measured for 120 min. Artificial cerebrospinal fluid (5 microl) was injected intracerebroventricularly 60 min before heat exposure in five control rats. Colonic temperature increased from 37.22 +/- 0.21 to 40.68 +/- 0.31 degrees C after 60 min. In six rats injected intracerebroventricularly with 10 microg of the AT(1) antagonist losartan, colonic temperature increased from 37.41 +/- 0.27 to 41.72 +/- 0.28 degrees C after 60 min. This increase was significantly greater than controls (P < 0.03). Losartan-treated rats drank 1.1 +/- 0.4 ml of water compared with 5.9 +/- 0.77 ml (P < 0.002) drank by control animals, despite a similar body weight loss in the two groups. Central losartan did not inhibit the drinking response to intracerebroventricular carbachol in heated rats, suggesting that losartan treatment did not nonspecifically depress behavior. We conclude that central angiotensinergic mechanisms have a role in both thermoregulatory cooling in response to heat exposure and also the ensuing water intake.  相似文献   

11.
Norepinephrine (NE)-induced increase in oxygen consumption (VO2) and colonic temperature (Tc) was greater in cold-acclimated rats housed at 4 degrees C for 4 weeks (CA) than warm-acclimated controls housed at 24 degrees C for 4 weeks (WA). On the other hand, shivering activity measured at 4 degrees C was less in CA than in WA, while propranolol administration eliminated the difference between these two groups by enhancing shivering in CA. Wet weight and protein content of interscapular brown adipose tissue (IBAT) were greater in CA than in WA. Following cold acclimation, CA were deacclimated at 24 degrees C for 5 weeks. During deacclimation, half of this latter group were forced to run (15 m.min-1 for 1 h) every day (CD-T) while the remaining rats remained sedentary (CD-S). Shivering activity assessed at 4 degrees C 4 weeks after commencing cold deacclimation was significantly less in CD-T than in CD-S and the difference disappeared following propranolol injection. VO2 and Tc responses to NE injection measured 1, 2 and 5 weeks after commencing cold deacclimation did not differ between CD-S and CD-T. Although IBAT weight was lighter in CD-T than in CD-S, its total protein content was not different between the latter two groups of rats. These results suggest that a greater degree of NE-independent nonshivering thermogenesis (NST) is retained in rats that are exercised during the process of deacclimation as compared with animals that are sedentary. This difference in NST would not seem to be directly related to BAT thermogenic capacity.  相似文献   

12.
The purpose of this study was to test the hypothesis that the rise in colonic temperature (Tc) during nonexertional heat stress is exaggerated in senescent (SEN, 24 mo, n = 12) vs. mature (MAT, 12 mo, n = 15) conscious unrestrained Fischer 344 rats. On 2 separate days (48 h apart) each SEN and MAT animal was exposed to an ambient temperature (Ta) of 42 degrees C (relative humidity 20%) until a Tc of 41 degrees C was attained and then cooled at a Ta of 26 degrees C until Tc returned to the initial control level. Control Tc was similar in the two groups for both trials. The rate of Tc change during heating was 63% greater (0.070 +/- 0.005 vs. 0.043 +/- 0.004 degrees C/min, P less than 0.05) and the time to 41 degrees C reduced by 36% (54 +/- 6 vs. 85 +/- 10 min, P less than 0.05) in MAT vs. SEN animals during the first exposure, although the cooling rate was slower in the MAT (0.048 +/- 0.004 degrees C/min) vs. SEN (0.062 +/- 0.006 degrees C/min) animals (P less than 0.05). The heating rate was unchanged in MAT animals between trials 1 and 2. However, SEN animals had a 95% increase in heating rate in trial 2 compared with trial 1 (P less than 0.05), and the corresponding time to 41 degrees C was decreased by 44% (P less than 0.05). As a result, rate of heating and time to 41 degrees C were similar in the two groups during trial 2. The cooling rate was similar between trials within each group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Previous work has suggested that men (M) are more sensitive to cold stress than women. There have also been observations that suggest that amenorrheic women (AW) are less thermally responsive than eumenorrheic women (EW). We investigated the hypothesis that M, EW, and AW would have different responses to cold stress. The subjects (6/group) were tested four times: twice at rest for 60 min (5 and 22 degrees C) and twice in a progressive exercise test (5 and 22 degrees C). At rest at 22 degrees C AW had a lower O2 uptake (VO2) than M and lower rectal (Tre) and finger temperatures than EW. At rest at 5 degrees C both AW and EW had lower skin temperature (Tsk) than M, but there were no group differences in peripheral Tsk sites. M increased VO2 after 10 min and EW after 20 min of cold stress; however, AW did not increase metabolism until 60 min. In the two exercise tests Tre increased in proportion to relative work load; in the 5 degrees C test there was little evidence that exercise increased Tsk sites above rest levels. Few of the metabolic or thermal differences could be accounted for by body fatness, body surface area (BSA), or BSA/kg. The data support the hypothesis that M, EW, and AW have different responses to cold stress.  相似文献   

14.
Increase in rat intestinal permeability to endotoxin during hyperthermia   总被引:1,自引:0,他引:1  
Victims of heat stroke exhibit several clinical features which are also encountered in endotoxaemia. In order to investigate these similarities hyperthermic rats were used to explore the possibility that high body temperature results in increased permeability of intestinal wall to endotoxin. 125I endotoxin was introduced into intestinal segments taken from non-heat exposed rats. The segments were then incubated at 37 degrees C or 45 degrees C. Intestinal segments from heat stressed rats were similarly prepared and incubated at 37 degrees C. Leakage of endotoxin from segments taken from heat stressed rats was three times greater than from those from non-heat stressed rats, as were the segments from non-heat stressed rats which were incubated at 45 degrees C. These results indicate that the intestinal membrane is damaged by heat and that an increase in outward leakage of microbial endotoxins from the gut then occurs. This might contribute to the pathophysiological picture of heatstroke.  相似文献   

15.
During this investigation the effects of heat acclimation and exercise on creatine kinase and creatine kinase BB isoenzyme responses in various tissues and serum of male Sprague-Dawley rats were ascertained. Forty rats were randomly divided into two groups of 20 rats each. One group was housed at 22+/-1 degrees C and the other at 33+/-1 degrees C. Each of the two groups were subdivided into two subgroups of ten rats each. One subgroup of each group was subjected to a programme of treadmill running of progressive intensity over a period of 6 weeks at the temperature at which it was housed while the other served as a resting control. At the end of the acclimation programme the rats were running at 23 m/min for 80 min. On the day of sacrifice all four subgroups were subjected to a discontinuous exercise protocol (10 min running alternated by a 2-min rest period; repeated three times) at 30+/-1 degrees C on a rodent treadmill at 23 m/min. The tissues investigated were kidney, heart and muscle. The rats were anaesthetized with pentobarbital sodium (6 mg/100 g body mass) injected intraperitoneally. The tissues were freeze-clamped and stored in liquid air until analysed. The body temperature of the four subgroups at the end of the experimental protocol were not significantly different. Acclimation at 33+/-1 degrees C resulted in significantly lower creatine kinase activity levels. Exercise at 30+/-1 degrees C also resulted in decreased creatine kinase activity levels in both acclimated groups. A similar trend was observed regarding creatine kinase BB isoenzyme activity levels, especially in kidney.  相似文献   

16.
1. The effect of sodium acetylo-salicylate (2 g per os) on the thermoregulatory responses of 10 male subjects was studied by direct and indirect calorimetry during two tests : heat exposure at 37 degrees C and exercise (50 W) at 25 degrees C. Both test were performed twice : with salicylate treatment and with a placebo. 2. During heat exposure at 37 degrees C for 75 min, the rise in tympanic temperature (Tty) and in mean skin temperature Ts, the time course of heat losses by radiation (R), convection (C) and evaporation (E), and the metabolic rate (M), measured by oxygen consumption, were not altered by salicylate treatment. 3. During exercise, salicylate treatment did not affect the time course of Tty and Ts, (R + C) and M. However, salicylate treatment decreased the delay for triggering the evaporative response (E) to the thermal load; similarly, the increase in cutaneous blood flow was triggered sooner in subjected receiving salicylate than in controls. 4. In conclusion, these results suggest that, during exercise, the thermal controller triggers thermoregulatory responses during passive hyperthermia by heat exposure.  相似文献   

17.
Ten male volunteers were divided into two groups based on body morphology and mass. The large-body mass (LM) group (n = 5) was 16.3 kg heavier and 0.22 cm2 X kg-1 X 10(-2) smaller in surface area-to-mass ratio (AD X wt-1) (P less than 0.05) than the small-body mass (SM) group (n = 5). Both groups were similar in total body fat and skinfold thicknesses (P greater than 0.05). All individuals were immersed for 1 h in stirred water at 26 degrees C during both rest and one intensity of exercise (metabolic rate approximately 550 W). During resting exposures metabolic rate (M) and rectal temperature (Tre) were not different (P greater than 0.05) between the LM and SM groups at min 60. Esophageal temperature (Tes) was higher (P less than 0.05) for the SM group at min 60, although the change in Tes during the 60 min between groups was similar (LM, -0.4 degrees C; SM, -0.2 degrees C). Tissue insulation (I) was lower (P less than 0.05) for SM (0.061 degrees C X m-2 X W-1) compared with the LM group (0.098 degrees C X m-2 X W-1). During exercise M, Tre, Tes, and I were not different (P greater than 0.05) between groups at min 60. These data illustrate that a greater body mass between individuals increases the overall tissue insulation during rest, most likely as a result of a greater volume of muscle tissue to provide insulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
P P Lin  G M Hahn 《Radiation research》1988,113(3):501-512
Chinese hamster ovary HA-1 cells were tested for their ability to respond to mitogenic stimulation after hyperthermia at 45 degrees C. Cells were arrested by 24 h incubation in serum-free Eagle's MEM. Heating of arrested cells in serum-free medium did not alter heat sensitivity compared to exponentially growing cells heated in serum-containing medium. After hyperthermia cells exhibited a delay in the ability to undergo mitogenesis. Recovery of the capacity for mitogenesis occurred during the 24 h following heating and was able to take place in the absence of serum. After recovery in serum-free medium, cells were simultaneously assayed for survival and mitogenesis as measured by [3H]Thy uptake. With increasing heating time, surviving fraction and mitogenesis decreased. The reduction in survival was similar to the reduction in [3H]Thy incorporation. The relationship between mitogenesis and cell death was studied in more detail with flow cytometry. At a relatively mild heat dose of 30 min at 45 degrees C (survival = 30%), a small population of cells (9%) was found to be clonogenically dead yet capable of being stimulated to progress from G1 to G2-M. At a more severe heat dose of 40 min at 45 degrees C (survival = 3%), stimulation of dead cells could not be detected. Therefore, hyperthermia impairs mitogenic ability, but at low heat doses, a subpopulation of killed cells can still be stimulated to progress through the cell cycle.  相似文献   

19.
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.  相似文献   

20.
A new simple but general estimation method for survival time in a hot environment is presented in this study. Even in heat-tolerant rats showing a triphasic heat response, an accurate estimation of survival time (ST) is possible. Rat groups, which included some heat-tolerant individuals, were exposed to 42.5 degrees C, 40% rh. Colonic temperature (Tco) was measured continuously by copper-constantan thermocouple. The ST (Y) of male and female rats were expressed as a linear function of time (X) until the Tco of 42.5 degrees C was reached: Y = 0.976X + 30.6 and Y = 0.968X + 31.6, respectively. A Tco of 42.5 degrees C at rest was just below the maximum survivable body temperature and above the steady-state equilibrium Tco levels during the second phase of the triphasic heat-response curve. Heat-tolerant individuals showed lower equilibrium temperatures than heat-intolerant rats. All 140 rats survived the Tco of 42.5 degrees C and lived for more than 8 wk, thus enabling them to be used for future experiments on thermoregulation. The heat survivors were able to reproduce, and their genetically controlled offspring could be used for thermoregulatory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号