首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex-role reversal occurs when females compete more intensely than males for access to mates. In this paper, we survey the occurrence of sex-role reversal in vertebrates: we focus on behavioural aspects of sex-role reversal and we examine possible endocrinological correlates of this phenomenon. The best documented cases among vertebrates of sex-role reversal occur in fish and birds. In nearly all sex-role reversed species or populations, females have higher potential reproductive rates than males. Some species in which females were previously thought to be the predominant competitors for mates (for instance seahorses and a dendrobatid frog), appear not to be sex-role reversed according to recent studies. The endocrinology of sex-role reversal has been studied in only a few species and therefore remains poorly understood. In birds, which probably have been studied the most in this respect, steroid hormones appear to follow the typical ancestral conditions (for instance no reversal of testosterone levels) in sex-role reversed species, whereas prolactin, a principal regulator of the onset and maintenance of incubation, departs from the usual avian pattern in that it is higher in males than in females. The study of sex-role reversed behaviour offers unique opportunities not only to test sexual selection theory, but also to enhance our understanding of the neuroendocrine mechanisms mediating behavioural sex differences.  相似文献   

2.
Male aggressive behavior is generally regulated by testosterone (T). In most temperate breeding males, aggressive behavior is only expressed during the reproductive period. At this time circulating T concentrations, brain steroid receptors, and steroid metabolic enzymes are elevated in many species relative to the nonreproductive period. Many tropical birds, however, display aggressive behavior both during the breeding and the nonbreeding season, but plasma levels of T can remain low throughout the year and show little seasonal fluctuation. Studies on the year-round territorial spotted antbird (Hylophylax n. naevioides) suggest that T nevertheless regulates aggressive behavior in both the breeding and nonbreeding season. We hypothesize that to regulate aggressive behaviors during the nonbreeding season, when T is at its minimum, male spotted antbirds increase brain sensitivity to steroids. This can be achieved by locally up-regulating androgen receptors (ARs), estrogen receptors (ERs), or the enzyme aromatase (AROM) that converts T into estradiol. We therefore compared mRNA expression of AR, ERalpha, and AROM in free- living male spotted antbirds across reproductive and nonreproductive seasons in two brain regions known to regulate both reproductive and aggressive behaviors. mRNA expression of ERalpha in the preoptic area and AR in the nucleus taeniae were elevated in male spotted antbirds during the nonbreeding season when circulating T concentrations were low. This unusual seasonal receptor regulation may represent a means for the year-round regulation of vertebrate aggressive behavior via steroids by increasing the brain's sensitivity to sex steroids during the nonbreeding season.  相似文献   

3.
Testosterone is assumed to be the key hormone related to resource-defence aggression. While this role has been confirmed mostly in the context of reproduction in male vertebrates, the effect of testosterone on the expression of resource-defence aggression in female vertebrates is not so well established. Furthermore, laboratory work suggests that progesterone inhibits aggressive behaviour in females. In this study, we investigated the hormonal changes underlying territorial aggression in free-living female African black coucals, Centropus grillii (Aves; Cuculidae). Females of this sex-role reversed polyandrous bird species should be particularly prone to be affected by testosterone because they aggressively defend territories similar to males of other species. We show, however, that territorial aggression in female black coucals is modulated by progesterone. After aggressive territorial challenges female black coucals expressed lower levels of progesterone than unchallenged territorial females and females without territories, suggesting that progesterone may suppress territorial aggression and is downregulated during aggressive encounters. Indeed, females treated with physiological concentrations of progesterone were less aggressive than females with placebo implants. This is one of the first demonstrations of a corresponding hormone-behaviour interaction under challenged and experimental conditions in free-living females. We anticipate that our observation in a sex-role reversed species may provide a more general mechanism, by which progesterone--in interaction with testosterone--may regulate resource-defence aggression in female vertebrates.  相似文献   

4.
The Lapland longspur (Calcarius lapponicus) is an arctic-breeding songbird that shows rapid behavioral changes during a short breeding season. Changes in plasma testosterone (T) in the spring are correlated with singing but not territorial aggression in males. Also, T treatment increases song but not aggression in this species. In contrast, in temperate-zone breeders, song and aggression are highly correlated, and both increase after T treatment. We asked whether regional or temporal differences in androgen-metabolizing enzymes in the longspur brain explain hormone-behavior patterns in this species. We measured the activities of aromatase, 5alpha-reductase and 5beta-reductase in free-living longspur males. Aromatase and 5alpha-reductase convert T into the active steroids 17beta-estradiol (E(2)) and 5alpha-dihydrotestosterone (5alpha-DHT), respectively. 5beta-Reductase deactivates T via conversion to 5beta-DHT, an inactive steroid. We examined seven brain regions at three stages in the breeding season. Overall, aromatase activity was high in the hypothalamus, hippocampus, and ventromedial telencephalon (containing nucleus taeniae, the avian homologue to the amygdala). 5beta-Reductase activity was high throughout the telencephalon. Activities of all three enzymes changed over time in a region-specific manner. In particular, aromatase activity in the rostral hypothalamus was decreased late in the breeding season, which may explain why T treatment at this time does not increase aggression. Changes in 5beta-reductase do not explain the effects of plasma T on aggressive behavior.  相似文献   

5.
The Lapland longspur (Calcarius lapponicus) is an arctic‐breeding songbird that shows rapid behavioral changes during a short breeding season. Changes in plasma testosterone (T) in the spring are correlated with singing but not territorial aggression in males. Also, T treatment increases song but not aggression in this species. In contrast, in temperate‐zone breeders, song and aggression are highly correlated, and both increase after T treatment. We asked whether regional or temporal differences in androgen‐metabolizing enzymes in the longspur brain explain hormone‐behavior patterns in this species. We measured the activities of aromatase, 5α‐reductase and 5β‐reductase in free‐living longspur males. Aromatase and 5α‐reductase convert T into the active steroids 17β‐estradiol (E2) and 5α‐dihydrotestosterone (5α‐DHT), respectively. 5β‐Reductase deactivates T via conversion to 5β‐DHT, an inactive steroid. We examined seven brain regions at three stages in the breeding season. Overall, aromatase activity was high in the hypothalamus, hippocampus, and ventromedial telencephalon (containing nucleus taeniae, the avian homologue to the amygdala). 5β‐Reductase activity was high throughout the telencephalon. Activities of all three enzymes changed over time in a region‐specific manner. In particular, aromatase activity in the rostral hypothalamus was decreased late in the breeding season, which may explain why T treatment at this time does not increase aggression. Changes in 5β‐reductase do not explain the effects of plasma T on aggressive behavior. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 176–188, 1999  相似文献   

6.
Defining sex roles has been driven by differences in mating systems at the extreme: polygyny and polyandry. Roles may reverse depending on which sex limits the reproductive rate of the other, and it is generally the female that limits the male. Males therefore compete for female mates. But in species in which the male limits the reproductive rate of the female, the female competes for male mates and assumes the masculine role. Complications arise, however, in species with typical roles when males are temporarily limiting, and females then briefly compete for and display to males. Problems also occur among tightly monogamous species with biparental care, where the mates have equal reproductive rates; both males and females compete intrasexually for mates. Despite this, monogamous species have masculine and feminine roles, typically manifested as the male dominating the female. Some monogamous species are nevertheless sex-role reversed. The pervasive behavioral mechanism characterizing the masculine role is dominance through aggression, size, or both. Attending more to behavioral mechanisms will enrich our understanding of sex-role reversal.  相似文献   

7.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5 alpha-, and 5 beta-reductase, enzymes that convert T to 17 beta-estradiol, 5 alpha-dihydrotestosterone (5 alpha-DHT, a potent androgen), or 5 beta-DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5 beta-reductase changed seasonally in a region-specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5 beta-Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free-living animals.  相似文献   

8.
In sex-role-reversed species, females compete for resources (e.g., mates) more intensively than do males. However, it remains unclear whether these species exhibit sex differences in the intensity of aggressive behavior in the context of within-sex contests. Cichlid fish in the genus Julidochromis exhibit intraspecific variation in mating systems, ranging from monogamy to cooperative polyandry with sex-role reversal. In the study reported here, we observed aggressive interactions among three same-sex individuals in Julidochromis regani in the laboratory and tested whether inter-female aggression was more intense than inter-male aggression. Although difference in body size strongly determined the direction of aggression in fish, aggression by a smaller-sized individuals toward larger ones was occasionally observed. This type of aggression was common between individuals of a similar body size (≤5 mm) and occurred more frequently among females than males. In contrast, differences in body size and sex did not affect the frequency of aggression by larger-sized individuals against smaller ones. Bidirectional aggression (i.e., mouth fighting) occurred frequently when two individuals had similar body size, and there was no difference in its frequency between sexes. However, temporal analysis showed that females performed bidirectional aggression more persistently than males. These sex differences in the intensity of intrasexual aggression could be the behavioral mechanisms underpinning cooperative polyandry.  相似文献   

9.
To elucidate the mechanisms of amphibian gonadal sex differentiation, we examined the expression of aromatase and androgen receptor (AR) mRNAs for days 17-31 after fertilization. The effects of inhibitors and sex steroid hormones were also examined. In ZZ males, expression of AR decreased after day 19, while aromatase expression was low throughout the sampling period. Males treated with 17beta-estradiol (E2) showed increasing aromatase expression after day 21, and formed ovaries. AR antagonist treatment also induced high-level aromatase expression and ovarian differentiation. In males co-treated with an aromatase inhibitor and E2, the undifferentiated gonads developed into testes despite high-level aromatase expression. Males treated with androgen and E2 before and during an estrogen sensitive period, respectively, also formed testes. In ZW females, AR expression persisted at a low-level, while aromatase expression increased after day 18. Short-term treatment with an aromatase inhibitor was ineffective in preventing ovarian differentiation, whereas long-term treatment resulted in testes developing from ovarian structure. Compared with the ZZ males and ZW females, WW females did not exhibit detectable expression of AR, suggesting that the active AR gene(s) itself, or a putative gene regulating AR gene expression, is located on Z chromosomes. From the time lag of aromatase expression between ZW females and ZZ males treated with E2 and the effect of AR antagonist, it was found that in males elevated AR expression suppresses aromatase expression directly or indirectly. Consequently, endogenous androgens, accumulated by blocking estrogen biosynthesis, induced testicular differentiation. The gonadogenesis of males is dependent on sex hormone, whereas that of females has evolved to hormone-independence.  相似文献   

10.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5α‐, and 5β‐reductase, enzymes that convert T to 17β‐estradiol, 5α‐dihydrotestosterone (5α‐DHT, a potent androgen), or 5β‐DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5β‐reductase changed seasonally in a region‐specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5β‐Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free‐living animals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 209–221, 2003  相似文献   

11.
In the brain, the conversion from androgen into estrogen is an important process for the differentiation of the brain function in male rodents. The aromatase is expressed in some nucleus of the brain. To assess the functional significance of the aromatase gene in development and activation of sex-specific behavior, we analyzed behavioral phenotypes of the aromatase knockout (ArKO) male mice. ArKO males obviously decreased their fertility and showed deficits in male sexual behavior including mount, intromission and ejaculation. Noncontact penile erection was not significantly affected by defect of the aromatase gene. A reduction of aggressive behavior against male intruders was also observed in ArKO males, while they tend to exhibit aggression toward estrous females during male copulatory tests. Moreover, the infanticide toward the pups was observed in the ArKO males, whereas characteristic parental behavior, but not infanticide was observed in wild-type males. These results indicate that aromatase gene expression is a critical step not only for motivational and consummatory aspects of male sexual behavior, but also for aggressive and parental behaviors in male mice.  相似文献   

12.
13.
The hormonal control of territorial aggression in male and female vertebrates outside the breeding season is still unresolved. Most vertebrates have regressed gonads when not breeding and do not secrete high levels of sex steroids. However, recent studies implicate estrogens in the regulation of non-breeding territoriality in some bird species. One possible source of steroids during the non-breeding season could be the adrenal glands that are known to produce sex steroid precursors such as dehydroepiandrosterone (DHEA). We studied tropical, year-round territorial spotted antbirds (Hylophylax n. naevioides) and asked (1). whether both males and females are aggressive in the non-breeding season and (2). whether DHEA is detectable in the plasma at that time. We conducted simulated territorial intrusions (STIs) with live decoys to male and female free-living spotted antbirds in central Panama. Non-breeding males and females displayed robust aggressive responses to STIs, and responded more intensely to decoys of their own sex. In both sexes, plasma DHEA concentrations were detectable and higher than levels of testosterone (T) and 17beta-estradiol (E(2)). In males, plasma DHEA concentrations were positively correlated with STI duration. Next, we conducted STIs in captive non-breeding birds. Captive males and females displayed robust aggressive behavior. Plasma DHEA concentrations were detectable in both sexes, whereas T was non-detectable (E(2) was not measured). Plasma DHEA concentrations of males were positively correlated with aggressive vocalizations and appeared to increase with longer STI durations. We conclude that male and female spotted antbirds can produce DHEA during the non-breeding season and DHEA may serve as a precursor of sex steroids for the regulation of year-round territorial behavior in both sexes.  相似文献   

14.
Testosterone (T) regulates many traits related to fitness, including aggression. However, individual variation in aggressiveness does not always relate to circulating T, suggesting that behavioural variation may be more closely related to neural sensitivity to steroids, though this issue remains unresolved. To assess the relative importance of circulating T and neural steroid sensitivity in predicting behaviour, we measured aggressiveness during staged intrusions in free-living male and female dark-eyed juncos (Junco hyemalis). We compared aggressiveness to plasma T levels and to the abundance of androgen receptor (AR), aromatase (AROM) and oestrogen receptor alpha (ORα) mRNA in behaviourally relevant brain areas (avian medial amygdala, hypothalamus and song control regions). We also asked whether patterns of covariation among behaviour and endocrine parameters differed in males and females, anticipating that circulating T may be a better predictor of behaviour in males than in females. We found that circulating T related to aggressiveness only in males, but that gene expression for ORα, AR and AROM covaried with individual differences in aggressiveness in both sexes. These findings are among the first to show that individual variation in neural gene expression for three major sex steroid-processing molecules predicts individual variation in aggressiveness in both sexes in nature. The results have broad implications for our understanding of the mechanisms by which aggressive behaviour may evolve.  相似文献   

15.
An individual's position in a social hierarchy profoundly affects behavior and physiology through interactions with community members, yet little is known about how the brain contributes to status differences between and within the social states or sexes. We aimed to determine sex-specific attributes of social status by comparing circulating sex steroid hormones and neural gene expression of sex steroid receptors in dominant and subordinate male and female Astatotilapia burtoni, a highly social African cichlid fish. We found that testosterone and 17β-estradiol levels are higher in males regardless of status and dominant individuals regardless of sex. Progesterone was found to be higher in dominant individuals regardless of sex. Based on pharmacological manipulations in males and females, progesterone appears to be a common mechanism for promoting courtship in dominant individuals. We also examined expression of androgen receptors, estrogen receptor α, and the progesterone receptor in five brain regions that are important for social behavior. Most of the differences in brain sex steroid receptor expression were due to sex rather than status. Our results suggest that the parvocellular preoptic area is a core region for mediating sex differences through androgen and estrogen receptor expression, whereas the progesterone receptor may mediate sex and status behaviors in the putative homologs of the nucleus accumbens and ventromedial hypothalamus. Overall our results suggest sex differences and similarities in the regulation of social dominance by gonadal hormones and their receptors in the brain.  相似文献   

16.
The basis of functional gender differences in adult responsiveness to testosterone (T) is not yet understood. Conversion of T to estradiol by cytochrome P450 aromatase in the medial preoptic area is required for the full expression of male sexual behavior in rats. High levels of aromatase are found in the medial preoptic nucleus (MPN) and in an interconnected group of sexually dimorphic nuclei which mediate masculine sexual behavior. Within this neural circuit, aromatase is regulated by T, acting through an androgen receptor (AR)-mediated mechanism. This arrangement constitutes a feedforward system because T is both the regulator and the major substrate of aromatase. Preoptic aromatase is thus more active in adult males than in females because of normal sex differences in circulating androgen levels. However, the mechanism of enzyme induction also appears to be sexually dimorphic because equivalent physiological doses of T stimulate aromatase to a greater extent in males than in females. Dose-response studies indicate that the sex difference is apparent over a range of circulating T concentrations and constitute a gender difference in T efficacy, but not potency. Sex differences in aromatase correlate with sex differences in nuclear AR concentrations in most regions of the sexually dimorphic neural circuit, but not in MPN. These results suggest that males may have larger populations of target cells in which aromatase is regulated by androgen, but the lack of a gender difference in AR levels in the MPN suggests that differences in post-receptor mechanisms could also be involved. Measurements of aromatase mRNA in androgen-treated gonadectomized rats demonstrate that sex difference in regulation is exerted pretranslationally. Taken together these results demonstrate a sexually dimorphic mechanism that could potentially limit the action of T in females, and may relate to the enhanced expression of T-stimulated sexual behaviors in males.  相似文献   

17.
Species in which females compete more intensely than males for access to mates are uncommon. Sex-role reversal in fishes has been documented only in species in which males bear eggs, such as pipefish and a mouth brooding cardinalfish. I investigated the reproductive behavior of the tidewater goby, Eucyclogobius newberryi (Gobiidae), to determine whether and to what degree this species is sex-role reversed. Males constructed and defended burrows for spawning in sand. Both sexes initiated courtship, but the female's breeding coloration was more striking. The intensity of sexual aggression was greater among females than among males. The female laid her entire clutch with a single male, and the male accepted only one clutch per brooding cycle. Both sexes spawned repeatedly (up to 12 times in aquaria), but fish did not form permanent pairs. Males cared for eggs in the burrow 9–11 days until hatching, and rarely if ever emerged to feed. Many aspects of male behavior (nest construction and defense, courtship, and parental care) were typical of most gobiids. On the other hand, female behavior (black nuptial coloration and intense female-female competition) was unusual, not only for gobiids but for animals in general. I therefore concluded that the tidewater goby is moderately sex-role reversed. Its sexual behavior is apparently unique among fishes because it is the only reported case of sex-role reversal in teleost males that do not bear eggs or developing young. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The purpose of this experiment was to study the effects of homologous and heterologous gonadal hormones on sexual and aggressive behavior in a reptilian species. Thirty adult male and thirty adult female lizards (Anolis carolinensis) were divided into 10 groups of six each (five groups per sex) and each group was given one of five treatments: either left intact, sham-castrated and injected with the hormone vehicle, castrated and injected with the hormone vehicle, castrated and injected with estradiol benzoate, or castrated and injected with testosterone propionate. After a week of visual isolation and daily hormone injection, animals were tested four times, twice with a stimulus animal of each sex. Females treated with estrogen were receptive, but did not court. Females treated with androgen were receptive and also courted and pursued stimulus females as frequently as males given androgen. No males in any group were receptive, and thus the female appears to be more capable of heterotypical sexual behavior than the male. Castrated males failed to court. Courtship and pursuit of stimulus females was readily stimulated in males with testosterone, and weakly stimulated by estrogen. Intact males were very aggressive, but lower levels of aggression were independent of gonadal hormones, as was subordination (head-nodding). The results for aggression and subordination are interpreted with reference to naturally-occurring Anolis behavior, and the results for sexual behavior are compared with similar experiments with mammals and birds.  相似文献   

19.
Recently, we described the distribution of testosterone-metabolizing enzymes (i.e., aromatase, 5 alpha- and 5 beta-reductases) in the zebra finch (Taeniopygia guttata) brain using a sensitive radioenzyme assay combined to the Palkovits punch method. A number of sex-differences in the activity of these enzymes were observed especially in nuclei of the song-control system. The hormonal controls of these differences have now been analyzed by gonadectomizing birds of both sexes and by giving them a replacement therapy with silastic implants of testosterone (T). Five nuclei of the song system (Area X [X], nucleus magnocellularis of the anterior neostriatum [MAN], nucleus robustus archistriatalis [RA], nucleus intercollicularis [ICo], hyperstriatum ventrale, pars caudalis [HVc]) and three preoptic-hypothalamic areas (preoptic anterior [POA], periventricular magnocellular nucleus [PVM], and posterior medial hypothalamic nucleus [PMH]) were studied as well as other limbic and control non-steroid-sensitive areas. The activity of the 5 alpha-reductase was higher in males than in females for the five song-control nuclei and was not affected by the hormonal treatments. The overall activity of this enzyme was not sexually dimorphic in POA and PVM. It was higher in males than in females in intact birds only, and was reduced by gonadectomy and enhanced by T. The activity of the 5 beta-reductase was higher in females than in males in all nuclei of the song system and in POA, but was not influenced by the changes in T level. Both sex and treatment effects were observed in the control of aromatase. The production of estrogens was dimorphic (females greater than males) in RA and PMH. It was increased by T in POA, PVM, and PMH, and also in RA. These data show that some of the sex differences in T-metabolizing enzymes result from the exposure to different levels of T in adulthood (e.g., 5 alpha-reductase in POA and PVM or aromatase in PVM), whereas others persist even if birds are exposed to the same hormonal conditions. These are presumably the result of organizational effects of steroids. The steroid modulation of the aromatase might be related directly to the activation of sexual, aggressive, and nest-building behaviors, whereas the stable dimorphism in 5 alpha- and 5 beta-reductase observed in the nuclei of the song system might be one of the neurochemical bases of the sex differences in the vocal behavior of the zebra finch.  相似文献   

20.
Generally in birds, the classic sex roles of male competition and female choice result in females providing most offspring care while males face uncertain parentage. In less than 5% of species, however, reversed courtship sex roles lead to predominantly male care and low extra-pair paternity. These role-reversed species usually have reversed sexual size dimorphism and polyandry, confirming that sexual selection acts most strongly on the sex with the smaller parental investment and accordingly higher potential reproductive rate. We used parentage analyses and observations from three field seasons to establish the social and genetic mating system of pheasant coucals, Centropus phasianinus, a tropical nesting cuckoo, where males are much smaller than females and provide most parental care. Pheasant coucals are socially monogamous and in this study males produced about 80% of calls in the dawn chorus, implying greater male sexual competition. Despite the substantial male investments, extra-pair paternity was unusually high for a socially monogamous, duetting species. Using two or more mismatches to determine extra-pair parentage, we found that 11 of 59 young (18.6%) in 10 of 21 broods (47.6%) were not sired by their putative father. Male incubation, starting early in the laying sequence, may give the female opportunity and reason to seek these extra-pair copulations. Monogamy, rather than the polyandry and sex-role reversal typical of its congener, C. grillii, may be the result of the large territory size, which could prevent females from monopolising multiple males. The pheasant coucal’s exceptional combination of classic sex-roles and male-biased care for extra-pair young is hard to reconcile with current sexual selection theory, but may represent an intermediate stage in the evolution of polyandry or an evolutionary remnant of polyandry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号