首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Female–female aggression often functions in competition over reproductive or social benefits, but the proximate mechanisms of this apparently adaptive behaviour are not well understood. The sex steroid hormone testosterone (T) and its metabolites are well-established mediators of male–male aggression, and several lines of evidence suggest that T-mediated mechanisms may apply to females as well. However, a key question is whether mechanisms of female aggression primarily reflect correlated evolutionary responses to selection acting on males, or whether direct selection acting on females has made modifications to these mechanisms that are adaptive in light of female life history. Here, I examine the degree to which female aggression is mediated at the level of T production, target tissue sensitivity to T, or downstream genomic responses in order to test the hypothesis that selection favours mechanisms that facilitate female aggression while minimizing the costs of systemically elevated T. I draw heavily from avian systems, including the dark-eyed junco (Junco hyemalis), as well as other organisms in which these mechanisms have been well studied from an evolutionary/ecological perspective in both sexes. Findings reveal that the sexes share many behavioural and hormonal mechanisms, though several patterns also suggest sex-specific adaptation. I argue that greater attention to multiple levels of analysis—from hormone to receptor to gene network, including analyses of individual variation that represents the raw material of evolutionary change—will be a fruitful path for understanding mechanisms of behavioural regulation and intersexual coevolution.  相似文献   

3.
Testosterone (T) regulates many traits related to fitness, including aggression. However, individual variation in aggressiveness does not always relate to circulating T, suggesting that behavioural variation may be more closely related to neural sensitivity to steroids, though this issue remains unresolved. To assess the relative importance of circulating T and neural steroid sensitivity in predicting behaviour, we measured aggressiveness during staged intrusions in free-living male and female dark-eyed juncos (Junco hyemalis). We compared aggressiveness to plasma T levels and to the abundance of androgen receptor (AR), aromatase (AROM) and oestrogen receptor alpha (ORα) mRNA in behaviourally relevant brain areas (avian medial amygdala, hypothalamus and song control regions). We also asked whether patterns of covariation among behaviour and endocrine parameters differed in males and females, anticipating that circulating T may be a better predictor of behaviour in males than in females. We found that circulating T related to aggressiveness only in males, but that gene expression for ORα, AR and AROM covaried with individual differences in aggressiveness in both sexes. These findings are among the first to show that individual variation in neural gene expression for three major sex steroid-processing molecules predicts individual variation in aggressiveness in both sexes in nature. The results have broad implications for our understanding of the mechanisms by which aggressive behaviour may evolve.  相似文献   

4.
    
The objectives of this work were to determine whether or not plasma levels of testosterone and estradiol reflect the various grades of sex reversal in genetic female chickens treated with Fadrozole (CGS 16949 A), a nonsteroidal aromatase inhibitor, and whether gonadal aromatase activity and plasma levels of testosterone and estradiol in treated females can or not be modified by post-hatch treatments with Fadrozole or Fadrozole + testosterone. Eggs were injected with 1 mg Fadrozole on day 4 of incubation. In females having developed sex-reversed gonads, endocrine parameters (estradiol and testosterone) at and after 13 weeks of age were indicative of the degree of sex reversal, with, for example, sex-reversed females with two testes having the highest levels of testosterone and the lowest levels of estradiol. Among these females, eight (from a total of 13) produced ejaculates with scarce and abnormal spermatozoa. Some motility was observable in the ejaculates from five of them. None of the post-hatch treatments had a significant effect on plasma levels of testosterone or estradiol (measured at 3-week intervals from week 4 to week 28 post-hatch) or on gonadal aromatase activity (measured at 12 and 28 weeks). In conclusion, these results indicate that plasma levels of testosterone and estradiol at and after 13 weeks of age are valuable indicators of the degree of sex reversal in female chickens treated with Fadrozole prior to gonadal sex differentiation. In pre-cited conditions, post-natal treatments with either Fadrozole or Fadrozole + testosterone had no apparent effect on the degree of sex reversal in these birds. Finally, the occurrence of ejaculates with motile although scarce and abnormal spermatozoa, revealed that epididymes and ducti deferens can develop and become functional in sex-reversed female chickens.  相似文献   

5.
6.
    
In biparental species, aggression, dominance, and parental care are typically sexually dimorphic. While behavioral dimorphism is often strongly linked to gonadal sex, the environment—either social or ecological—may also influence sex‐biased behavior. In the biparental cichlid fish Julidochromis marlieri, the typical social environment for breeding pairs consists of large females paired with smaller males. While both sexes are capable of providing territory defense and parental care, the larger female provides the majority of defense for the pair, while the smaller male remains in the nest guarding their offspring. We examine the contributions of sex and relative mate size to these sex‐biased behaviors in monogamous J. marlieri pairs. Both female‐larger and male‐larger pairs were formed in the laboratory and were observed for territorial aggression (against conspecifics and heterospecifics), dominance, and parental care. In female‐larger pairs, territorial aggression and intra‐pair dominance were female‐biased, while in male‐larger pairs this bias was reversed. For both pairing types, the presence of an intruder amplified sex differences in territorial aggression, with the larger fish always attacking with greater frequency than its mate. Though less robust, there was evidence for plasticity of sex‐bias for some egg care related behaviors in the inverse direction. Our study suggests that relative mate size strongly influences the sex bias of aggression and dominance in J. marlieri and that this aspect of the social environment can override the influence of gonadal sex on an individual's behavior. The remarkable plasticity of this species makes Julidochromis an exciting model that could be used to address the relationship between proximate and ultimate mechanisms of behavioral plasticity.  相似文献   

7.
Estrogen, as an aromatized metabolite of testosterone, has a facilitatory effect on male aggressive behavior in mice. Two subtypes of estrogen receptors, alpha (ER-alpha) and beta (ER-beta), in the brain are known to bind estrogen. Previous studies revealed that the lack of ER-alpha gene severely reduced the induction of male aggressive behavior. In contrast, mice that lacked the ER-beta gene tended to be more aggressive than wild type (WT) control mice, although the behavioral effects of ER-beta gene disruption were dependent on their social experience. These findings lead us to hypothesize that estrogen may facilitate aggression via ER-alpha whereas it may inhibit aggression via ER-beta. In the present study, we further investigated the role of ER-beta in the regulation of aggressive behavior by examining developmental changes starting at the time of first onset, around the age of puberty. Aggressive behaviors of ER-beta gene knockout (betaERKO) mice were examined in three different age groups, puberty, young-adult, and adult. Each mouse was tested every other day for three times in a resident-intruder paradigm against olfactory bulbectomized intruder mice and their trunk blood was collected for measurements of serum testosterone after the completion of the study. Overall, betaERKO mice were significantly more aggressive than WT. These genotype differences were more pronounced in puberty and young adult age groups, but not apparent in the adult age group, in which betaERKO mice were less aggressive than those in two younger age groups. Serum testosterone levels of betaERKO mice were significantly higher than those of WT mice only in the pubertal age group, but not in young adult (when betaERKO mice were still significantly more aggressive than WT mice) and adult (when no genotype differences in aggression were found) age groups. These results suggest that ER-beta mediated actions of gonadal steroids may more profoundly be involved in the inhibitory regulation of aggressive behavior in pubertal and young adult mice.  相似文献   

8.
9.
10.
11.
12.
雄激素和雌激素受体药物筛选方法的研究进展   总被引:2,自引:0,他引:2  
牟凌云  王明伟 《生命科学》2004,16(5):305-311
雄激素和雌激素受体通过与相应激素特异性结合促进细胞分化和组织生长,发挥重要的生理功能,其功能失调可诱发多种疾病。雄激素和雌激素受体的选择性调节剂是治疗相关疾病的重要药物。基于基因组学、分子生物学、细胞生物学和生物信息学等最新研究成果而发展形成的实验技术或方法被用于新型雄激素和雌激素受体调节剂的筛选,显著加快了新药开发的进程。  相似文献   

13.
    
The Lapland longspur (Calcarius lapponicus) is an arctic‐breeding songbird that shows rapid behavioral changes during a short breeding season. Changes in plasma testosterone (T) in the spring are correlated with singing but not territorial aggression in males. Also, T treatment increases song but not aggression in this species. In contrast, in temperate‐zone breeders, song and aggression are highly correlated, and both increase after T treatment. We asked whether regional or temporal differences in androgen‐metabolizing enzymes in the longspur brain explain hormone‐behavior patterns in this species. We measured the activities of aromatase, 5α‐reductase and 5β‐reductase in free‐living longspur males. Aromatase and 5α‐reductase convert T into the active steroids 17β‐estradiol (E2) and 5α‐dihydrotestosterone (5α‐DHT), respectively. 5β‐Reductase deactivates T via conversion to 5β‐DHT, an inactive steroid. We examined seven brain regions at three stages in the breeding season. Overall, aromatase activity was high in the hypothalamus, hippocampus, and ventromedial telencephalon (containing nucleus taeniae, the avian homologue to the amygdala). 5β‐Reductase activity was high throughout the telencephalon. Activities of all three enzymes changed over time in a region‐specific manner. In particular, aromatase activity in the rostral hypothalamus was decreased late in the breeding season, which may explain why T treatment at this time does not increase aggression. Changes in 5β‐reductase do not explain the effects of plasma T on aggressive behavior. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 176–188, 1999  相似文献   

14.
    
Using the S-rR strain of the medaka Oryzias latipes, we examined the effect of a non-aromatizable androgen on sex determination. Intrafollicular immature oocytes isolated before breakdown of the germinal vesicle were incubated in the presence of 17alpha-methyldihydrotestosterone (MDHT) for about 10 h during their maturational period. At the end of incubation, mature oocytes were rinsed and then artificially inseminated in regular saline. The fertilized eggs were then allowed to develop in tap water, and the fry were reared on a regular powdered diet until adulthood. Sex reversal of female to male was observed in a manner dependent on the dose of MDHT. In the solvent control group in which intrafollicular oocytes were matured in medium containing no exogenous androgen, no sex reversal was observed. The present finding, that the sex of medakas can be reversed by a single in vitro exposure of immature oocytes to androgen during the preovulatory period, suggests the existence in the oocyte of a sex determinant sensitive to sex steroids. This method for controlling the sex of eggs before fertilization may establish sex-determined eggs as potent material for investigating the mechanism of sex determination in the medaka.  相似文献   

15.
Sexual hormones, estrogens and androgens, determine biological response in a tissue- and gender-specific manner and have a pivotal role in endocrine-mediated tumorigenesis. In situ estrogen production by aromatase is a critical determinant for breast cancer growth and progression. On the contrary, clinical and in vitro studies indicate that androgens have a protective role in mammary carcinogenesis. Here, we demonstrated, in hormone-dependent breast cancer cells, the existence of a functional interplay between the androgen receptor (AR), the orphan nuclear receptor DAX-1 and the aromatase enzyme involved in the inhibition of the estrogen-dependent breast cancer cell proliferation exerted by androgen signaling. Indeed, our results revealed, in MCF-7 cells, that ligand-activated AR induces the expression of the orphan nuclear receptor DAX-1 by direct binding to a newly identified androgen-response-element within the DAX-1 proximal promoter. In turn, androgen-induced DAX-1 is recruited, in association with the corepressor N-CoR, within the SF-1/LRH-1 containing region of the aromatase promoter, thereby repressing aromatase expression and activity. In elucidating a novel mechanism by which androgens, through DAX-1, inhibit aromatase expression in breast cancer cell lines, these findings reinforce the theory of androgen- opposing estrogen-action, opening new avenues for therapeutic intervention in estrogen-dependent breast tumors.  相似文献   

16.
There are now many known cases of orthologous or unrelated proteinsin different species that have undergone parallel evolutionto satisfy a similar function. However, there are no reportedcases of parallel evolution for proteins that bind a commonligand but have different functions. We focused on two proteinsthat have different functions in steroid hormone biosynthesisand action but bind a common ligand, androgen. The first protein,androgen receptor (AR), is a nuclear hormone receptor and thesecond one, aromatase (cytochrome P450 19 [CYP19]), convertsandrogen to estrogen. We hypothesized that binding of the androgenligand has exerted common selective pressure on both AR andCYP19, resulting in a signature of parallel evolution betweenthese two proteins, though they perform different functions.Consistent with this hypothesis, we found that rates of aminoacid change in AR and CYP19 are strongly correlated across themetazoan phylogeny, whereas no significant correlation was foundin the control set of proteins. Moreover, we inferred that genomictoolkits required for steroid biosynthesis and action were presentin a basal metazoan, cnidarians. The close similarities betweenvertebrate and sea anemone AR and CYP19 suggest a very ancientorigin of their endocrine functions at the base of metazoanevolution. Finally, we found evidence supporting the hypothesisthat the androgen-to-estrogen ratio determines the gonadal sexin all metazoans.  相似文献   

17.
为探究3种雌激素受体(estrogen receptor) Esr1、Esr2和Gper1在红耳龟早期胚胎性腺分化中的作用,本研究在分析受体基因表达特征的基础上,通过向性腺分化启动前的产雄温度(male-producing temperature, MPT)龟胚分别注射Esr1、Esr2和Gper1激动剂PPT、WAY 200070和G-1,从性腺形态结构、生殖细胞分布模式、性别分化关键基因和蛋白表达分布方面对处理后的胚胎性腺进行了性逆转分析。表达分析结果显示,esr1在性别分化关键时期性腺中的表达量显著高于esr2gper1 (表达极低),且呈现产雌温度(female-producing temperature, FPT)性腺高表达。功能验证实验显示,PPT处理后的MPT性腺形态结构明显雌性化,生殖细胞呈现雌性分布模式;雄性分化关键基因dmrt1amhsox9 mRNA表达明显下降,雌性分化关键基因foxl2cyp19a1 mRNA表达则显著上升;Amh和Sox9蛋白表达的荧光信号几乎消失,Foxl2和Arom蛋白被激活出现大量表达,表明性腺由雄性逆转为雌性(性逆转率:70.27%)。而WAY 200070和G-1处理后的MPT性腺仍分化为睾丸,雌雄基因和蛋白的表达及分布与雄性性腺类似。结果表明在红耳龟中,单独激活Esr1能够充分启动早期性腺的雌性分化过程,提示雌激素可能通过其受体1 (Esr1)诱导早期卵巢分化。本研究为进一步解析雌激素在龟性别决定和分化中的调控机制提供了参考。  相似文献   

18.
    
Mating behavior between recently diverged species in secondary contact can impede or promote reproductive isolation. Traditionally, researchers focus on the importance of female mate choice and male–male competition in maintaining or eroding species barriers. Although female–female competition is widespread, little is known about its role in the speciation process. Here, we investigate a case of interspecific female competition and its influence on patterns of phenotypic and genetic introgression between species. We examine a hybrid zone between sex‐role reversed, Neotropical shorebird species, the northern jacana (Jacana spinosa) and wattled jacana (J. jacana), in which female–female competition is a major determinant of reproductive success. Previous work found that females of the more aggressive and larger species, J. spinosa, disproportionately mother hybrid offspring, potentially by monopolizing breeding territories in sympatry with J. jacana. We find a cline shift of female body mass relative to the genetic center of the hybrid zone, consistent with asymmetric introgression of this competitive trait. We suggest that divergence in sexual characteristics between sex‐role reversed females can influence patterns of gene flow upon secondary contact, similar to males in systems with more typical sex roles.  相似文献   

19.
    
Little is known about the effect of male parental care and behavioural sex‐role reversal on the mating system of birds because genetic markers for species with these characteristics are lacking. We developed primers for nine polymorphic microsatellite loci in pheasant coucals (Centropus phasianinus). Eight of the primers were also polymorphic in African black coucals (Centropus grillii). Pheasant coucals are of particular interest in the study of evolutionary and behavioural ecology, because their sex‐role reversal and extensive male parental care suggests low levels of extra‐pair fertilizations, yet they have large testes indicating sperm competition.  相似文献   

20.
  总被引:1,自引:0,他引:1  
Testosterone is assumed to be the key hormone related to resource-defence aggression. While this role has been confirmed mostly in the context of reproduction in male vertebrates, the effect of testosterone on the expression of resource-defence aggression in female vertebrates is not so well established. Furthermore, laboratory work suggests that progesterone inhibits aggressive behaviour in females. In this study, we investigated the hormonal changes underlying territorial aggression in free-living female African black coucals, Centropus grillii (Aves; Cuculidae). Females of this sex-role reversed polyandrous bird species should be particularly prone to be affected by testosterone because they aggressively defend territories similar to males of other species. We show, however, that territorial aggression in female black coucals is modulated by progesterone. After aggressive territorial challenges female black coucals expressed lower levels of progesterone than unchallenged territorial females and females without territories, suggesting that progesterone may suppress territorial aggression and is downregulated during aggressive encounters. Indeed, females treated with physiological concentrations of progesterone were less aggressive than females with placebo implants. This is one of the first demonstrations of a corresponding hormone-behaviour interaction under challenged and experimental conditions in free-living females. We anticipate that our observation in a sex-role reversed species may provide a more general mechanism, by which progesterone--in interaction with testosterone--may regulate resource-defence aggression in female vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号