首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of tunicamycin, an inhibitor of protein N-glycosylation, was studied in non-growing mycelium of Trichoderma harzianum induced to secrete N-acetyl-β-d-glucosaminidase by the addition of N-acetylglucosamine. Tunicamycin (30 μg ml−1) had no significant effect on growth of the fungus, or on the total protein secreted or specific activity of N-acetyl-β-d-glucosaminidase. However, in the presence of the inhibitor an underglycosylated form of the enzyme was produced. The apparent molecular masses for this and the native enzyme were 110 and 124 kDa, respectively. Both forms of the enzyme showed the same optimum pH and temperature, but the underglycosylated form was more sensitive to inactivation by both high temperature (60°C) and the proteolytic enzyme trypsin.  相似文献   

2.
Role of glycosylation in secretion of yeast acid phosphatase   总被引:1,自引:0,他引:1  
V Mrsa  S Barbari?  B Ries  P Mildner 《FEBS letters》1987,217(2):174-179
The minimal glycosylation requirement for acid phosphatase secretion and activity was investigated using tunicamycin, an inhibitor of protein glycosylation, and a yeast mutant defective in the synthesis of oligosaccharide outer chains. The results obtained show that outer chain addition is not essential for secretion of active enzyme and that only 4 core chains, out of 8 normally attached to a protein subunit, are sufficient for enzyme transport to the periplasmic space. Enzyme forms with less than 4 chains were retained in membranes of endoplasmic reticulum. Secreted underglycosylated enzyme forms are partially or completely inactive.  相似文献   

3.
Secreted yeast acid phosphatase is found to be an octamer under physiological conditions rather than a dimer, as previously believed. The octameric form of the enzyme dissociates rapidly into dimers at pH below 3 and above 5, or by treatment with guanidine hydrochloride or urea, without further dissociation of dimers. Crosslinking experiments revealed that the dissociation of the octamer occurs through very unstable hexamers and tetramers, showing that the octamer is built of dimeric units. Dissociation to dimer was in all cases accompanied with a loss of most of the enzyme activity. The underglycosylated acid phosphatase, with less than eight carbohydrate chains per subunit, secreted from cells treated with moderate tunicamycin concentrations, contained besides octamers a high proportion of the dimers. With decreasing levels of enzyme glycosylation, the proportion of dimers increases and the amount of octamers correspondingly decreases. Furthermore, underglycosylated octamers were found to be significantly less stable than the fully glycosylated ones. This showed that carbohydrate chains play a significant role in the octamer formation in vivo, and in stabilization of the enzyme octameric form.  相似文献   

4.
The yeast Cryptococcus albidus secretes a highly glycosylated xylanase into the culture medium, when grown in presence of xylan, but addition of tunicamycin to the medium results in the formation of an underglycosylated xylanase. Both types of enzyme preparation were incubated with starved yeast cells. Assimilation of the xylanases by the cells over a period of time was followed by electron microscopy using immunolocalization with anti-xylanase antibodies coupled to gold-labelled protein A. Electron micrographs showed that the glycosylated enzyme mostly remained attached to the cell wall surface, while the underglycosylated enzyme not only surrounded the cell wall but was also present in the hyaloplasm, indicating its assimilation by the cells. These experiments indicate that the carbohydrate moiety of the xylanase protects the enzyme from its assimilation by the cells producing it.  相似文献   

5.
To determine N-acetyl-beta-D-glucosaminidase (EC 3.2.1.30) in human neutrophil granules separated by a method requiring heparin, the inhibition of this enzyme by heparin was studied. Neutrophils were purified from blood of five donors by modifications of the Hypaque-Ficoll and dextran separation methods resulting in a suspension which was 96% neutrophils. Neutrophil lysates were assayed for N-acetyl-beta-D-glucosaminidase by measuring the amount of p-nitrophenol released from p-nitrophenyl-N-acetyl-beta-D-glucosaminide. The reaction showed first-order kinetics with regard to enzyme concentration. Triton X-100, 0.1% v/v, enhanced enzyme activity. Heparin was shown to reduce neutrophil lysate N-acetyl-beta-D-glucosaminidase to a specific activity of 46% at a heparin concentration of 2 units per assay and to 43% (maximal inhibition) at 17 and 50 units of heparin per assay. Substantially higher heparin concentrations partially restored the inhibited activity, the maximal restoration being a return to 80% of the original activity at 1700 units of heparin per assay. Protamine sulfate was assessed for its ability to restore N-acetyl-beta-D-glucosaminidase activity in the presence of heparin. At 1.0 mg/10 units of heparin, protamine restores enzyme activity to its heparin-free activity. These studies of human neutrophil N-acetyl-beta-D-glucosaminidase demonstrate: (1) specific enzyme activity is 28.8 +/- 7.0 nmole p-nitrophenol released per minute per milligram of protein or 1.7 +/- 0.5 nmole p-nitrophenol released per minute per 10(6) neutrophils; (2) heparin rapidly but finitely inhibits enzyme activity at very low concentrations and paradoxically restores it toward normal at high concentrations; and (3) protamine sulfate restores enzyme activity inhibited by heparin.  相似文献   

6.
N-acetyl-beta-D-glucosaminidase (NAG) activity and isoenzyme profiles were studied in myeloid, histiocytic, B-lymphoid, T-lymphoid and lymphoblastoid continuous cell lines in order to determine if N-acetyl-beta-D-glucosaminidase isoenzyme expression may help to distinguish among various types of leukemic proliferation. Total NAG activity in myeloid, histiocytic, erythroleukemic cell lines were higher than Burkitt's lymphoma derived cell lines (B-lymphoid), T- or lymphoblastoid cell lines. On chromatofocusing by PBE 94 coupled with an automated enzyme assay an intermediate (I) beta-N-acetyl-glucosaminidase form, eluting between forms B and A, was found in all leukemic and in Epstein-Barr virus infected lymphoblastoid cell lines analysed. The different profiles recorded, the expression of the I form and the different I/B ratios may be useful as markers of tumour proliferation.  相似文献   

7.
Fertilization in Bufo arenarum requires the sperm to penetrate the egg envelopes. The incubation of isolated vitelline envelopes with sperm induces the acrosome reaction, releasing proteases and glycosidases to the media. In the present work N-acetyl-beta-D-glucosaminidase, beta-D-galactosidase, beta-D-glucosidase, alpha-D-mannosidase, alpha-L-fucosidase, and alpha-D-glucosidase activities are measured in spermatozoa. N-acetyl-beta-D-glucosaminidase is the major sperm glycosidase activity assayed. However, N-acetyl-beta-D-galactosamine show competitive inhibitory effect. The glycosidase pH optimum is 3.5 being inhibited at pHs higher than 7.5. In our study, N-acetyl-beta-D-glucosaminidase is the only glycosidase that in vitro binds to vitelline envelopes in conditions that resemble natural fertilization media. The isolation of the active enzyme will allow studies of its role in fertilization. The enzyme has been purified in a two-step procedure. After native gel electrophoresis, the activity-stained band was cut out and the eluted enzyme was finally subjected to ConA-sepharose chromatography. In SDS-PAGE, the denatured enzyme migrates as a single band with a molecular mass of 45 kDa. Furthermore, analysis by size-exclusion on HPLC showed a peak of activity at around 45 kDa. Preliminary localization studies showed higher relative activity in the acrosomal content. In addition, 10% of the N-acetyl-beta-D-glucosaminidase activity was associated with the reacted sperm. By in vitro fertilization assay, it was observed that the inhibition of the enzyme results in the inhibition of fertilization. This last study shows that N-acetyl-beta-D-glucosaminidase plays an important role in toad fertilization.  相似文献   

8.
Cyclic AMP dependent protein kinase has beeen identified in human skeletal muscle tissue. In crude muscle extracts the enzyme was 3--5 fold activated by cyclic AMP. The cyclic AMP-dependent activity (corresponding to the inactive holoenzyme) was completely inhibited by the heat stable inhibitor of protein kinase. Reciprocal changes of the cyclic AMP-dependent activity in skeletal muscle were observed after administration of epinephrine and insulin in vivo. Infusion of epinephrine in healthy volunteers increased the level of cyclic AMP and decreased the activity of the cyclic AMP-depenent form (i.e. the inactive form) of protein kinase. These changes were reversible after cessation of epinephrine administration. The results are consistent with an activation of protein kinase in vivo due to an epinephrine mediated increase of the concentration of cyclic AMP. I.v. injection of insulin had the opposite effect on the enzyme in skeletal muscle, leading to increased activity of the cyclic AMP-dependent form of protein kinase. Insulin had no effect on the level of cyclic AMP, but promoted a transient increase of cyclic GMP 1 min. after insulin injection. The effect by insulin on protein kinase cannot be related to the level of cyclic AMP or cyclic GMP.  相似文献   

9.
The capacity to produce exocellular enmzymes was studied for 92 samples of fungi from various marine habitats in the Sea of Okhotsk (78 strains) and the Sea of Japan (14 strains). Strains producing highly active glycanases and glycosidases were found. Synthesis of O-glycosylhydrolases was stimulated by addition of laminaran to the nutrient medium. Highly purified N-acetyl-beta-D-glucosaminidase was isolated from the marine fungus Penicillium canescens. The molecular weight of the enzyme determined by SDS-Na-electrophoresis was 68 kDa. The enzyme displayed maximum activity at pH 4.5 and temperature 45 degrees C. Inactivation half-time of the enzyme at 50 degrees C was 25 min. N-acetyl-beta-D-glucosaminidase hydrolyzed both beta-glucosaminide and beta-galactosaminide bonds and possessed a high transglycosylazing activity.  相似文献   

10.
Tunicamycin, an inhibitor of N-acetylglucosaminylpyrophosphopolyisoprenol-dependent glycosylation, was used to study the effect of glycosylation on the synthesis, post-translational modification, secretion and function of the complement proteins that are associated with the major histocompatibility complex in humans, mice and guinea pigs. Tunicamycin blocked glycosylation of pro-C4, C2 and factor B and inhibited secretion of the corresponding native complement proteins synthesized by guinea-pig peritoneal macrophages in tissue culture. In addition, underglycosylated pro-C4 was more rapidly catabolized intracellularly than the corresponding fully glycosylated pro-complement protein. C4 protein secreted by cells incubated with tunicamycin had approximately the same specific biological activity as the protein obtained from control culture media, suggesting that carbohydrate is not required for its activity in immune haemolysis. Direct studies of carbohydrate incorporation and the tunicamycin effect suggested an unequal distribution of sugar among the C4 subunits, with maximal incorporation of carbohydrate into alpha-, and less into the beta-chain of the native protein.  相似文献   

11.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

12.
The interaction of three proteinases (seryl, cysteinyl, and metallo-) from Staphylococcus aureus with human plasma alpha 1-proteinase inhibitor has been investigated. As expected, none of the enzymes was inactivated by this protein, each, instead causing the conversion of the native inhibitor into an inactive form of decreased molecular weight. Amino-terminal sequence analysis indicated that inhibitor inactivation had occurred by peptide bond cleavage near the reactive center of this protein. When the inhibitor was modified by this treatment, it became resistant to both pH and temperature denaturation and, in contrast to the intact denatured protein, did not undergo further proteolytic degradation. This process of inactivation of alpha 1-proteinase inhibitor by pathogenic proteinases could result in a deregulation of its target enzyme, neutrophil elastase, and, therefore, may be important in the consumption of some plasma proteins by this enzyme during septicemia.  相似文献   

13.
An Arabidopsis thaliana pectin methylesterase that was not predicted to contain any signaling sequence was produced in E. coli and purified using a His tag added at its N-terminus. The enzyme demethylesterified Citrus pectin with a Km of 0.86 mg/ml. The enzyme did not require salt for activity and was found to be relatively temperature-sensitive. The precipitation of enzyme-treated pectin by CaCl2 suggested that the enzyme had a blockwise mode of pectin demethylesterification. A purified kiwi (Actinidia chinensis) pectin methylesterase inhibitor had no effect on the activity of the enzyme whereas it strongly inhibited a flax pectin methylesterase. A model of the protein structure revealed that an extra amino acid sequence in this particular Arabidopsis pectin methylesterase could form a ss-strand outside the core structure, which might be preventing the inhibitor from binding the protein.  相似文献   

14.
Mutations in the gene coding for a human ABC transporter protein, ABCC6 (MRP6), are responsible for the development of pseudoxanthoma elasticum. Here, we demonstrate that human ABCC6, when expressed by retroviral transduction in polarized mammalian (MDCKII) cells, is exclusively localized to the basolateral membrane. The human ABCC6 in MDCKII cells was found to be glycosylated, in contrast to the underglycosylated form of the protein, as expressed in Sf9 cells. In order to localize the major glycosylation site(s) in ABCC6, we applied limited proteolysis on the fully glycosylated and underglycosylated forms, followed by immunodetection with region-specific antibodies for ABCC6. Our results indicate that Asn15, which is located in the extracellular N-terminal region of human ABCC6, is the only N-glycosylation site in this protein. The polarized mammalian expression system characterized here provides a useful tool for further examination of routing, glycosylation, and function of the normal and pathological variants of human ABCC6.  相似文献   

15.
The enzyme N-acetyl-beta-D-glucosaminidase was purified from the cortical granules of Xenopus laevis eggs using affinity chromatography, gel filtration, and density gradient centrifugation. The enzyme had a molecular weight of 37,000-40,000 as determined by polyacrylamide gel electrophoresis and density gradient centrifugation, had a Km for p-nitrophenyl-beta-D-N-acetyl-glucosaminide of 0.66 mM and a Ki for glucosamine of 4.3 mM. The kinetic properties of the cortical granule enzyme were similar to the enzyme isolated from jack bean. Treatment of unfertilized eggs with the enzyme isolated from cortical granules or jack bean rendered eggs unfertilizable. Loss of fertilizability was proportional to the product of time and enzyme concentration, consistent with an enzymatic mechanism being responsible for the loss of fertilizability. The amount of enzyme present in the perivitelline space was approximately the same as that which reduced fertilizability by 50% in one hour. We suggest that the action of cortical granule N-acetyl-beta-D-glucosaminidase on egg integuments may function as a block to polyspermy at fertilization.  相似文献   

16.
P J McCormick  B J Keys  C Pucci  A J Millis 《Cell》1979,18(1):173-182
This report describes the identification and partial characterization of a 100K dalton “glucose-regulated” cell surface protein of human diploid fibroblasts (HDF). This protein is released into and can be recovered virtually intact from the surrounding culture medium. At the present level of analysis, the protein recovered from the culture medium (“conditioned medium”) is indistinguishable from the protein extracted directly from the cell surface by 1 M urea treatment. Both proteins have molecular weights of 100K daltons when analyzed by gel electrophoresis. The protein is readily labeled at the cell surface via lactoperoxidase-catalyzed iodination, and the label can be chased into the released form of this protein in conditioned medium. Antiserum raised against the medium form of the protein reacts with the surface form of the protein but does not react with fibronectin, the major cell surface protein of HDF. Conditioned medium from SV40-transformed human fibroblasts does not contain the 100K protein, but instead contains a component that has a slightly lower molecular weight (97K daltons). The lower molecular weight band does not iodinate at the cell surface and is apparently an underglycosylated form of the 100K protein. Its molecular weight is shifted back to 100K by growing transformed cells in medium containing excess glucose. After the shift, the component becomes accessible to the radioiodine label. We suggest that the 100K protein is a glucose-regulated protein (Shiu, Pouyssegur and Pastan, 1977; Pouyssegur and Yamada, 1978) that is released into the culture medium. An underglycosylated form of the same glycoprotein is released from transformed cells.  相似文献   

17.
The relationship between the state of oligomerization and activity of purified maize leaf phosphoenolpyruvate carboxylase using size exclusion high performance liquid chromatography was examined. Maximum activities of 35 to 38 micromoles per minute per milligram protein were found when 100% of the enzyme was in its tetrameric form. The effects of the sulfhydryl group modifiers CuCl2 and p-chloromercuribenzoate on enzyme inhibition and the state of aggregation of the protein complex were examined. Aggregation of the enzyme is temperature and pH sensitive with low temperature and high pH favoring depolymerization. Stability of the tetrameric form is largely dependent upon histidyl residues, and to some extent this explains the biphasic response of enzyme activity to changes in MgCl2 concentrations. Modification of the tetramer's histidyl residues by the inhibitor diethylpyrocarbonate (0.125 millimolar) results in its dissociation to the dimeric form and loss of activity. Subsequent treatment with 0.4 molar hydroxylamine results in reassociation to the tetramer and restoration of enzymic activity.  相似文献   

18.
At micromolar concentrations, many molecules form aggregates in aqueous solution. In this form, they inhibit enzymes non-specifically leading to false positive "hits" in enzyme assays, especially when screened in high-throughput. This inhibition can be attenuated by bovine serum albumin (BSA); the mechanism of this effect is not understood. Here we present evidence that BSA, lysozyme, and trypsin prevent inhibition when incubated at milligram per millilitre concentrations with aggregates prior to the addition of the monitored enzyme. These solutions still contained aggregates by dynamic light scattering (DLS), suggesting that inhibition is prevented by saturating the aggregate, rather than disrupting it. For most combinations of aggregate and protein, inhibition was not reversed if the competing protein was added after the incubation of aggregates with the monitored enzyme. In the one exception where modest reversal was observed, DLS and flow cytometry indicated that the effect was due to the disruption of aggregates. These results suggest that aggregate-bound enzyme is not in dynamic equilibrium with free enzyme and that bound enzyme cannot be displaced by a competing protein. To further test this hypothesis, we incubated aggregate-bound enzyme with a specific, irreversible inhibitor and then disrupted the aggregates with detergent. Most enzyme activity was restored on aggregate disruption, indicating no modification by the irreversible inhibitor. These results suggest that enzyme is bound to aggregate so tightly as to prevent any noticeable dissociation and that furthermore, aggregates are stable at physiologically relevant concentrations of protein.  相似文献   

19.
Two nuclease activities which were shown previously to copurify from extracts of log-phase Neurospora mycleia, a single-strand specific endonuclease activity (with DNA and RNA), and a strand nonspecific exonuclease activity (with DNA only) have been found to be associated with a single polypeptide. The enzyme has therefore been classified as an endoexonuclease. In logphase extracts, about 75% of this enzyme was found to exist in an inactive form which was activated in vitro either by endogenous phenylmethylsulfonyl fluoride sensitive proteinase(s) or by exogenous trypsin. The inactive form of endoexonuclease has been purified 45-fold in 15% yield free of the active enzyme. On electrophoresis in 6 M urea--polyacrylamide gels, it migrated at a much slower rate than the active enzyme, indicating that it is a less acidic and(or) larger protein than the active nuclease. The strong adsorption of this inactive enzyme on octyl-Sepharose suggests that the protein may have a relatively large hydrophobic domain. The protein may be a precursor of the active enzyme (a pronuclease) or a strong complex of enzyme with a proteinaceous inhibitor that is not dissociated in 6 M urea or during a variety of chromatographic procedures.  相似文献   

20.
We have previously reported that carp (Cyprinus carpio) tissue mitochondria contain a novel form of monoamine oxidase (MAO), which belongs neither to MAO-A nor to MAO-B of the mammalian enzyme. This conclusion results from the findings that the carp MAO was equally sensitive to a selective MAO-A inhibitor clorgyline and to the MAO-B selective inhibitor l-deprenyl, when tyramine, a substrate for both forms, serotonin or beta-phenylethylamine, a substrate for either A or B-form of mammalian MAO, was used. In the present study, we tried to detect another amine oxidase, termed tissue-bound semicarbazide-sensitive amine oxidase (SSAO), activity in carp tissues. As definition of SSAO was used, such as insensitivity to inhibition of the kynuramine oxidizing activity by an MAO inhibitor pargyline and high sensitivity to the SSAO inhibitor semicarbazide. The results indicated that the oxidizing activity was selectively and almost completely inhibited by 0.1 mM pargyline alone or a combination of 0.1 mM pargyline plus 0.1 mM semicarbazide, but not by 0.1 mM semicarbazide alone. We also tried to detect any SSAO activity by changing experimental conditions, such as lower incubation temperature, higher enzyme protein concentration, a lower substrate concentration and different pH's in the reaction, as the enzyme source. However, still no SSAO activity could be detected in the tissues. These results conclusively indicate that carp tissues so far examined do not contain SSAO activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号