首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Białek-Bylka  G.E.  Sofrová  D.  Szurkowski  J.  Skwarek  R.  Sopko  B.  Manikowski  H. 《Photosynthetica》2000,38(1):143-148
Pigment-protein complexes enriched in photosystem 1 (PS1) and, for comparison, enriched in photosystem 2 (PS2) were isolated from the cyanobacterium Synechococcus elongatus Nag. f. thermalis Geitl. They were immobilized and oriented in the polyvinyl alcohol (PVA) films, and studied by linear dichroism (LD), fluorescence polarization (FP), photoacoustic spectroscopy (PAS), and polarized photoacoustic spectroscopy (PAS and PAS). The LD signal of -carotene in the region with maximum at 500 nm was positive in the PS1 complex. The maximum value of fluorescence polarization (FP) in the measured photosynthetic pigment region was 1.25 and was similar to higher plant values. Carotenoids exhibited different efficiencies of thermal deactivation (max. at 500 nm) in PS1 and PS2. The thermal deactivation efficiency of carotenoids in comparison with that of chlorophyll (Chl) a at its red absorbance maximum was much higher in PS1 than in PS2 complexes. Cyanobacterial complexes did not contain Chl b, interpretation of the LD, PAS, and FP results is thus easier and can be compared with PS1 and PS2 values of higher plants, especially with Chl b-less mutant values.  相似文献   

2.
Waloszek  A.  Więckowski  S.  Planner  A.  Boguta  A.  Frąckowiak  D. 《Photosynthetica》2002,40(2):279-288
The character of interaction between carotenoids (Cars) and chlorophylls (Chls) in thylakoids isolated from cucumber cotyledons at three stages of greening (3, 6, and 24 h of irradiation with 120 µmol m–2 s–1) was studied. The shapes of the steady state photoacoustic spectra were changed with the change in time of greening and with the frequency of radiation modulation. The shapes show that changes not only in the contents of various pigments but also in pigment interactions with surrounding occur and that processes of thermal deactivation characterised by different kinetics take place. Slow processes of thermal deactivation are in most cases due to deactivation of triplet states. Long living triplet states are very often engaged in photochemical reactions that can destroy the tissue. Analysis of the time-resolved photothermal spectra shows that at later stage of greening, the chlorophyll (Chl) molecules are better shielded against photo-destruction because Cars more efficiently quench their triplet states. The yield of formation of the pigment triplet states measured by the time resolved photothermal method, always at the same energy absorbed by pigment mixture, declined during sample greening. The decay time of the slow component of pigment thermal deactivation, due predominantly to deactivation of the triplet state of Chl, decreases with the increase of time of greening from 6.2 µs for the 3-h sample to 1.5 µs for the 24 h sample. The energy taken by Cars from Chls is dissipated into heat, therefore the steady state and quick thermal deactivation values increased during the greening process. The Cars/Chls ratio in the thylakoids decreased during greening approximately 2 fold. Hence at a later phase of greening the Cars can quench the triplet states of Chls more efficiently than at an earlier phase of greening.  相似文献   

3.
Goc  J.  Klecha  K. 《Photosynthetica》2001,39(3):461-465
The cells of purple photosynthetic bacterium Rhodobacter sphaeroides embedded in stretched polymer films were irradiated by strong polarized white light with an electric vector parallel to the direction of film stretching. The polarized absorption and photoacoustic spectra before and after strong irradiation were measured. Measurements of absorbance showed no confident anisotropy before and after strong irradiation. In contradiction, the photoacoustic method showed after strong irradiation some changes in anisotropy of thermal deactivation due to the perturbation of the fate of excitations. The increase in yield of thermal deactivation, higher in a region of light-harvesting complex 2, can be explained by the irreversible changes in the conformation of the complexes due to strong irradiance reported up to now predominantly for thylakoid antenna complexes.  相似文献   

4.
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
A technique is described for the preparation of oriented samples from spinach chloroplasts whose linear dichroism is then studied by (flash) absorption spectroscopy. The chloroplasts are suspended in a glycerol-containing medium, oriented in a magnetic field, and slowly cooled in the magnet until the medium is rigid enough to avoid disorientation effects. The absorption spectra in polarized light have been measured at ?50° and ?170°C. They allow the orientation of chlorophyll b to be resolved, and the red transition moment is found to be tilted out of the membrane plane. A study of the flash-induced absorption changes linked to Photosystem-1 activity reveals a progressive evolution of the difference spectra and of the linear dichroism with decreasing temperatures. At ?170°C, the difference spectrum of P700 in the red is well resolved. All transition moments are found to be largely parallel to the membrane plane. The potential use of the technique for other experiments by differential absorption spectroscopy and by EPR techniques is discussed.  相似文献   

6.
This review considers the properties of biliproteins from cyanobacteria and red algae that grow in extreme habitats. Three situations are presented: cyanobacteria that grow at high temperatures; a red alga that grows in acidic conditions at high temperature; and an Antarctic red alga that grows in the cold in dim light conditions. In particular, the properties of their biliproteins are compared to those from organisms from more usual environments. C-phycocyanins from two cyanobacteria able to grow at high temperatures are found to differ in their stabilities when compared to C-phycocyanin from mesophilic algae. They differ in opposite ways, however. One is more stable to dissociation than the mesophilic protein, and the other is more easily dissociated at low temperatures. The thermophilic proteins resist thermal denaturation much better than the mesophilic proteins. The most thermophilic cyanobacterium has a C-phycocyanin with a unique blue-shifted absorption maximum which does not appear to be part of the adaptation of the cyanobacterium to high temperature. The C-phycocyanin from the high-temperature red alga is able to resist dissociation better than mesophilic C-phycocyanins. Electron micrographs show the phycobilisomes of these algae. The Antarctic alga grows under ice at some distance down the water column. Its R-phycoerythrin has a novel absorption spectrum that gives the alga an improved ability to harvest blue light. This may enhance its survival in its light-deprived habitat.  相似文献   

7.
Three photosynthetic pigments were studied: chlorophyll a, chlorophyll c and bacteriochlorcphyll a in nematic liquid crystal matrixes. The polarized absorption and fluorescence spectra as a function of the electric field have been measured. From the polarized components of the absorption A( parallel) and A( perpendicular) of the pigments in liquid crystals two reduced components A(x) and A(y) are calculated (x and y are the direction of the axis which is going through the second, fourth pyrrol rings, and the first, third rings, respectively). From these results the orientation of chlorophylls in liquid crystals and the configuration of the transition moments in the skeleton of the pigment molecules were determined.  相似文献   

8.
The unicellular cyanobacterium Synechocystis sp. strain 6701 was mutagenized with UV irradiation and screened for pigment changes that indicated genetic lesions involving the light-harvesting proteins of the phycobilisome. A previous examination of the pigment mutant UV16 showed an assembly defect in the phycocyanin component of the phycobilisome. Mutagenesis of UV16 produced an additional double mutant, UV16-40, with decreased phycoerythrin content. Phycocyanin and phycoerythrin were isolated from UV16-40 and compared with normal biliproteins. The results suggested that the UV16 mutation affected the alpha subunit of phycocyanin, while the phycoerythrin beta subunit from UV16-40 had lost one of its three chromophores. Characterization of the unassembled phycobilisome components in these mutants suggests that these strains will be useful for probing in vivo the regulated expression and assembly of phycobilisomes.  相似文献   

9.
A. Kadota  M. Wada  M. Furuya 《Planta》1985,165(1):30-36
Summary Perception of polarized light inducing phytochrome-mediated polarotropism in protonemata of the fern Adiantum capillus-veneris L. was analyzed using brief microbeam irradiation with polarized red (R) or far-red light (FR). The polarotropic response inducible by irradiation of the subapical 10–30-m part with polarized R vibrating parallel to the cell axis was nullified by subsequently giving R at the apical 0–2.5-m region. This inhibitory effect of R showed an action dichroism, that is, polarized R vibrating normal to the cell axis was effective but the parallel-vibrating R was not. On the other hand, FR irradiation of the extreme tip after irradiation of the whole cell with depolarized R effectively induced a tropic response. This FR effect also showed action dichroism, with parallel-vibrating polarized FR being more effective than FR vibrating normal to the cell axis. When the apical-dome region and the adjacent subapical 10–20-m region were sequentially irradiated with polarized R vibrating obliquely in different directions, polarotropism took place depending on the vibrating direction of the light given to the apical-dome region. Obliquely vibrating polarized FR given to the apical dome after irradiation of the whole cell with depolarized R also induced polarotropism. Thus, the difference in amount (or percent) of the far-redabsorbing form of phytochrome (Pfr) between the extreme tip and the subapical region appears to be crucial in regulating the direction of apical growth; the difference in Pfr level between the two sides of the protonemal apex may occur mainly at the apical dome. Furthermore, the transition moments of the red-absorbing form of phytochrome (Pr) and Pfr seem to be aligned parallel and normal, respectively, to the cell surface at the periphery of the apical hemisphere.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light  相似文献   

10.
Of 34 strains assigned to the cryptophyte genera Chroomonas Hansg., Hemiselmis Parke, and Komma D. R. A. Hill, distribution patterns of biliproteins, habitats, and sampling sites across a phylogenetic tree have been examined. The combined data set assembled from nuclear SSU rDNA, partial nuclear LSU rDNA, and nucleomorph SSU rDNA sequences comprised 4,083 positions and yielded an almost completely resolved tree. Spectrophotometry of the biliproteins and mapping of the different types of biliproteins onto the phylogenetic tree unveiled a complex evolutionary history. Different from other cryptophyte clades, the types of biliproteins were not generally congruent with clades or subclades of the genera Chroomonas (paraphyletic, phycocyanins [PCs] 645 or 630), Hemiselmis (PCs 612, 630 or phycoerythrin [PE] 555), and Komma (PC 645). At least one putative character reversal took place in the genus Chroomonas. Several changes in biliproteins have been found in the genus Hemiselmis, including two new biliprotein variants that probably originated by slight modifications from PC 612 and PE 555, respectively (PC 577 and PE 545/555). Freshwater and marine/brackish taxa were intermingled across the tree without displaying a specific pattern. In four terminal clades, genetically identical strains have been found to occur both in Europe and in the USA. The Chroomonas/Hemiselmis/Komma clade proved to be the most diverse of all cryptophyte clades concerning types of biliproteins and distribution of clades across marine or freshwater habitats.  相似文献   

11.
The environment of aromatic aminoacids in the thermal transition of brain tubulin has been studied by several spectroscopic techniques (Fourth Derivative, Difference Absorption, Fluorescence and Circular Ditchroism), in order to study its denaturation. An irreversible, temperature-induced, structural transition was found at around 48°C. In order to establish the relative degree of hydrophobicity of tubulin aromatic residues, before and after the thermal transition, difference and fourth derivative absorption spectra at different temperatures were compared with spectra of tyrosine and tryptophan model compounds in different media. It was found that at high temperatures, tubulin acquires a partially denatured stable state, with a significant amount of residual structure still preserved. This state is characterized by a general increase of the exposure of tyrosine residues to the medium, while the environment of tryptophans becomes more hydrophobic. Offprint requests to: A. Mozo-Villarías  相似文献   

12.
The biliproteins of the unicellular, thylakoid-less cyanobacterium Gleobacter violaceus were resolved by chromatography on hydroxylapatite and DEAE-cellulose into five components: phycoerythrin I and II, phycocyanin I and II, and allophycocyanin. Allophycocyanin B was not detected. Three of these components, phycoerythrin II, phycocyanin II, and allophycocyanin, were purified to homogeneity. Phycoerythrin II crystallized as hexagonal prisms. G. violaceus allophycocyanin crystallized as thin plates; unter similar conditions other cyanobacterial allophycocyanins crystallize as needles. The biliproteins in the phycoerythrin I and phycocyanin I components were present in polydisperse, high molecular weight aggregates, which may represent incompletely dissociated substructures of the phycobilisome.Both phycoerythrin components from G. violaceus carry phycoerythrobilin and phycourbilin groups in the ratio of 6:1. Separation of the and subunits of these biliproteins revealed that the phycoerythrobilins were equally distributed between the two subunits, and that the subunit alone carried the phycourobilin. These phycoerythrins are the first cyanobacterial phycobiliproteins found to carry a phycourobilin prosthetic group.Abbreviations used PE poycoerythrin - PC phycocyanin - AP allophycocyanin - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - B Bangiophycean - R Rhodophytan - C Cyanobacterial  相似文献   

13.
Five strains of a pigment mutant were isolated following UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) mutagenesis from a non-nitrogen fixing mutant of the cyanobacteriumGloeotrichia ghosei. Two of them (B-1 and V-1) were isolated by UV mutagenesis and other three (B-3, B-7 and Br-6) by MNNG mutagenesis. Among the five strains cultures of three strains (B-1, B-3 and B-7) were typically blue-green in colour. Culture of strain V-1 was found to be violet-pink and of Br-6 was brownish in colour. The parent strain of these mutants was dark-blue in colour. Blue-green mutants showed the predominance of phycocyanin (610 nm) whereas violet-pink and brown strains showed the predominance of phycoerythrin (550 nm) in the absorption spectra of water-soluble pigments. In contrast to these strains their parent strain showed both the absorption peaks (at 550 and 610 nm). Occurrence of stable pigment mutants of a filamentous cyanobacterium indicates that the synthesis of water-soluble pigments is genetically controlled in these mutant strains.  相似文献   

14.
The knowledge about a seed??s optical parameters is of great relevance in the seed technology practice. Such parameters provide information about its absorption and reflectance, which in turn is related to its color, quality, and health condition. The objective of the present study was to determine the optical absorption coefficient ?? for maize seeds (Zea mays L.) by means of the photoacoustic spectroscopy (PAS). Untreated seeds (I) and seeds dyed with methyl red (II) were used in this investigation. In addition, conventional reflectance measurements (obtained with the integrating sphere) were performed to validate PAS absorption measurements. The results show that the absorption spectra and reflection data of the seed samples are complementary. When used with thermally thick and optically opaque seeds, PAS may be considered as a potential diagnostic tool for the characterization of the seeds.  相似文献   

15.
The effect of growing Rhodopseudomonas (Rps.) acidophila and Rps. palustris in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) has been investigated. Growth with sub-maximal concentrations of DPA induces Car limitation. The exact response to DPA is species dependent. However, both Rps. acidophila and Rps. palustris respond by preferentially incorporating the limiting amount of coloured Cars into their LH2 complexes at the expense of the RC-LH1 complexes. As inhibition by DPA becomes more severe there is an increase in the percentage of Cars with reduced numbers of conjugated C=C bonds. The effect of this changed Car composition on the structure and function of the antenna complexes has been investigated using absorption, fluorescence, CD and Raman spectroscopies. The results show that although the presence of Car molecules is important for the stability of the LH2 complexes that the overall native structure can be maintained by the presence of many different Cars.  相似文献   

16.
Goc  J.  Klecha  K.  Waskowiak  A.  Miyake  J.  Frackowiak  D. 《Photosynthetica》2002,40(1):41-48
The polarized absorption, photoacoustic, fluorescence emission, and fluorescence excitation spectra of whole cells of cyanobacteria Synechocystis sp. embedded in a polymer film were measured. The bacteria cells, as it follows from anisotropy of absorption and fluorescence spectra, were even in a non-stretched polyvinyl alcohol film oriented to a certain extent. The measurements were done for such film in order to avoid the deformation of cyanobacteria shapes. Part of the samples was bleached by irradiation with strong polarized radiation with electric vector parallel to the orientation axis of cells. The anisotropy of photoacoustic spectra was higher than that of absorption spectra and it was stronger changed by the irradiation. Polarized fluorescence was excited in four wavelength regions characterised by different contribution to absorption from various bacteria pigments. The shapes of emission spectra were different depending on wavelength of excitation, polarization of radiation, and previous irradiation of the sample. The fluorescence spectra were analysed on Gaussian components belonging to various forms of pigments from photosystems (PS) 1 and 2. The results inform about excitation energy transfer between pools of pigments, differently oriented in the cells. Energy of photons absorbed by phycobilisomes was transferred predominantly to the chlorophyll of PS2, whereas photons absorbed by carotenoids to chlorophylls of PS1.  相似文献   

17.
The endophytic cyanobacterium, Anabaena azollae, isolated from laboratory cultures of Azolla caroliniana Willd., contains three spectroscopically distinct biliproteins. About 70% of the biliprotein is c-phycocyanin (max 610 nm) and 13% is allophycocyanin (max 647 nm, shoulder 620 nm). A third pigment corresponds to phycoerythrocyanin (max 570 nm, shoulder 590 nm). In very dilute solutions of allophycocyanin, at constant pH and buffer strength, the 647 nm maximum disappears and a single max occurs at 615–620 nm. The 647 nm absorption maximum reappears upon concentrating the dilute solution. Very dilute solutions of phycoerythrocyanin exhibit a broad peak between 570 and 590 nm. Absorption spectra of c-phycocyanin are not significantly altered upon dilution. Fluorescence emission maxima of phycoerythrocyanin, c-phycocyanin, and allophycocyanin occur at 630 nm, 643 nm and 660 nm respectively, using 540 nm excitation. Two subunits, of molecular weight 16,500 () and 20,600 (), are seen in c-phycocyanin upon dissociation with SDS. Dissociation of allophycocyanin and phycoerythrocyanin with SDS yields one sizeclass of subunits, with a molecular weight of about 17,500 for allophycocyanin and 18,000 for phycoerythrocyanin.Contribution No. 684 Offprint requests to: G. A. Peters  相似文献   

18.
The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters ( and ) of the angular distribution of c relative to F, and and , the average second-rank order parameters of the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than fluorescence that may be observed using longer-lived optically excited states.  相似文献   

19.
Monomeric and trimeric Photosystem I core complexes from the cyanobacterium Synechocystis PCC 6803 and LHC-I containing Photosystem I (PS I-200) complexes from spinach have been characterized by steady-state, polarized light spectroscopy at 77 K. The absorption spectra of the monomeric and trimeric core complexes from Synechocystis were remarkably similar, except for the amplitude of a spectral component at long wavelength, which was about twice as large in the trimeric complexes. This spectral component did not contribute significantly to the CD-spectrum. The (77 K) steady-state emission spectra showed prominent peaks at 724 nm (for the Synechocystis core complexes) and at 735 nm (for PS I-200). A comparison of the excitation spectra of the main emission band and the absorption spectra suggested that a significant part of the excitations do not pass the red pigments before being trapped by P-700. Polarized fluorescence excitation spectra of the monomeric and trimeric core complexes revealed a remarkably high anisotropy (0.3) above 705 nm. This suggested one or more of the following possibilities: 1) there is one red-most pigment to which all excitations are directed, 2) there are more red-most pigments but with (almost) parallel orientations, 3) there are more red-most pigments, but they are not connected by energy transfer. The high anisotropy above 705 nm of the trimeric complexes indicated that the long-wavelength pigments on different monomers are not connected by energy transfer. In contrary to the Synechocystis core complexes, the anisotropy spectrum of the LHC I containing complexes from spinach was not constant in the region of the long-wavelength pigments, and decreased significantly below 720 nm, the wavelength where the long-wavelength pigments on the core complexes start to absorb. These results suggested that in spinach the long-wavelength pigments on core and LHC-I are connected by energy transfer and have a non-parallel average Qy(0-0) transitions.Abbreviations PS Photosystem - P Primary donor - Chl chlorophyll - LHC light-harvesting complex - CD circular dichroism - LD linear dichroism - BisTris 2-[bis(2-hydroxyethyl)amino]-2-hydroxy-methylpropane-1,3-diol - RC reaction center  相似文献   

20.
Infrared absorption and resonance Raman spectroscopy (RRS) are used to study poly(dG-dC)·poly(dG-dC) in two different forms: the right-handed B form at low ionic strength and the left-handed Z form at high ionic strength. The existence of a new electronic absorption band in the 290–300-nm region is evidenced by uv RRS studies of the Z form at different wavelengths of excitation. Infrared absorption spectra prove that this new electronic band is polarized perpendicularly to the cytosine plane. The possibility of a nπ* character of this transition moment is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号