首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of tryptophan administration on neurochemical estimates of synthesis [5-hydroxytryptophan (5-HTP) accumulation following administration of a decarboxylase inhibitor], storage [5-hydroxytryptamine (5-HT) concentrations], and metabolism [5-hydroxyindoleacetic acid (5-HIAA) concentrations] of 5-HT in selected regions of the hypothalamus were determined using HPLC coupled to an electrochemical detector. Tryptophan methyl ester HCl (30-300 mg/kg i.p.) produced a dose-dependent increase in the rate of 5-HTP accumulation throughout the hypothalamus but had no effect on the rate of accumulation of 3,4-dihydroxyphenylalanine. Peak 5-HTP levels were attained by 30 min following administration of tryptophan (100 mg/kg i.p.) and were maintained for an additional 60 min. Tryptophan also produced concomitant dose-dependent increases in 5-HT and 5-HIAA concentrations in these same regions without changes in the 5-HIAA/5-HT ratio. These results indicate that exogenous tryptophan administration selectively increases the synthesis, storage, and metabolism of 5-HT in the hypothalamus without altering the synthesis of catecholamines. Inhibition of 5-HT uptake with chlorimipramine or fluoxetine produced modest (10-40%) reductions in 5-HIAA concentrations throughout the hypothalamus, revealing that only a minor portion of 5-HIAA is derived from released and recaptured 5-HT, whereas the major portion of this metabolite reflects intraneuronal metabolism of unreleased 5-HT. In both chlorimipramine- and fluoxetine-treated rats, 5-HIAA concentrations were significantly increased by tryptophan administration, indicating that the increase in synthesis of 5-HT following precursor loading is accompanied by an increase in the intraneuronal metabolism of 5-HT.  相似文献   

2.
The aim of this research was to assess the clinical and biochemical efficacy of the octreotide in the treatment of patients with various functional gastroenteropancreatic neuroendocrine tumors (GEP-NETs). The study included 14 patients treated with octreotide for 6 months. They were diagnosed with VIPoma, glucagonoma, gastrinoma, medullary thyroid carcinoma (solitary and as a part of MEN-II syndrome), pancreatic carcinoids (solitary and as a part of multiple endocrine neoplasia type-1 syndrome-MEN-1 syndrome) and midgut carcinoids. The patients presented with Verner-Morrison, glucagonoma, Zollinger Ellison and carcinoid syndrome respectively. All had a metastatic disease at the time of diagnosis and a positive octreoscan finding. Initially elevated chromogranin A (CgA) levels were detected in 11 (78.6%) and elevated 5-hydroxyindolacetic acid (5-HIAA) levels in 8 (57.1%) patients. Symptomatic efficacy assessments were made by diarrhea reductions during treatment course, and laboratory efficacy was assessed through changes in 5-HIAA and CgA levels. Assessments were made initially and following 6 months of therapy. Median urinary 5-HIAA and the number of stools decreased significantly (p = 0.016 and p = 0.009 respectively, p < 0.05) while CgA levels had the decreasing tendency but not statistically significant (p = 0.14). There was a positive correlation between the 5-HIAA reduction and the decrease in stool number at baseline and during treatment course (p < 0.05). No correlation was observed between 5-HIAA and CgA levels and also there was no correlation between CgA reduction and symptomatic improvement. The results prove octreotide to be effective in reducing symptoms and biochemical markers associated with hypersecretory syndromes of GEP-NETs.  相似文献   

3.
E H Lee 《Life sciences》1987,40(7):635-642
Effects of apomorphine (APO) and clonidine (CLON) on the mesostriatal and mesolimbic serotonergic systems were examined in the present study. Both drugs selectively elevated serotonin (5-HT) concentrations in the dorsal raphe and the striatum without significantly altering 5-HT measures in the median raphe and the hippocampus. Apomorphine also increased tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) levels in the dorsal raphe and 5-HIAA level in the striatum. Clonidine did not markedly alter tryptophan and 5-HIAA measures, while it decreased 5-HT turnover rate in both region, as indicated by the ratio of 5-HIAA/5-HT levels. Co-administration of APO and CLON, at doses of each drug exerted maximum effects on 5-HT alone, produced an additive effect on 5-HT in the dorsal raphe, while their effects on 5-HT and 5-HIAA in the striatum were counteracting each other. Effects of APO on 5-HT and 5-HIAA were attributed to the elevation of 5-HT precursor tryptophan, while effects of CLON on 5-HT and 5-HIAA were due to a decreased rate of 5-HT turnover. Therefore, the present results support the hypothesis that the additive effects of APO and CLON on dorsal raphe 5-HT are mediated through different receptors and neuropharmacological mechanisms.  相似文献   

4.
Abstract— Streptozotocin-induced diabetes in rats reduces brain tryptophan but is without effect on the central levels of 5-hydroxytryptamine (5-HT) or 5-hydroxyindoleacetic acid (5-HIAA). The present work investigates the effect of diabetes on the accumulation of brain tryptophan, 5-HT and 5-HIAA in various brain regions following a systemic tryptophan load. The results indicate that diabetes severely restricts the uptake of tryptophan by brain but that the tryptophan that is accumulated is normally converted to 5-HT and 5-HIAA. Possible mechanisms which might explain the apparent resistance of 5-HT metabolism to decreased precursor levels in diabetics are discussed.  相似文献   

5.
Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP-) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain-specific effect of ATD Moja-De on anxiety-like behavior.  相似文献   

6.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

7.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

8.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

9.
Abstract: Intracerebral microdialysis was applied to monitor the neocortical extracellular levels of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, the neurotransmitters dopamine (DA), noradrenaline (NA), and serotonin (5-HT), and the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in rats with various forms of experimental hepatic encephalopathy (HE). The extracellular aromatic amino acid levels were clearly increased in acute, subacute, and chronic HE. No changes compared with controls in the neocortical DA release could be detected in the three experimental HE rat models investigated. The NA release showed a significant increase only in the subacute HE group. These data suggest that HE may not be associated with any major reduction of neocortical DA or NA release as previously suggested. In acute and subacute HE, decreased extracellular DOPAC but elevated 5-HIAA concentrations were seen. In chronic HE, elevations of both DOPAC and 5-HIAA were observed. Neocortical 5-HT release did not change in subacute and chronic HE, whereas it decreased in acute HE compared with control values. Significant increase in extracellular concentrations of 5-HIAA and of the 5-HIAA/5-HT ratio in the present study are in agreement with previously reported increases in 5-HT turnover in experimental HE. However, a substantially increased 5-HT turnover in experimental HE does not appear to be related to an increase in neuronal neocortical 5-HT release.  相似文献   

10.
It was shown previously that focal cortical freezing lesions in rats cause widespread depression of local cerebral glucose utilization (LCGU) in cortical areas of the lesioned hemisphere. This was interpreted as reflecting functional depression. The underlying mechanisms were postulated to involve alterations of biogenic amine systems. Accordingly, levels of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and its precursor tryptophan were determined by an HPLC method with electrochemical detection in frontoparietal cortical areas of both hemispheres at 4 h and 1, 3, 6, 8, and 10 days after a unilateral cortical freezing lesion. The 5-HT content was significantly lower than normal in the lesioned hemisphere only at 24 h, whereas the 5-HIAA level peaked at 24 h but was significantly elevated above normal values between 4 h and 6 days after lesioning. No changes were noted in 5-HT and 5-HIAA contents in the hemisphere contralateral to the lesion. These results indicate that cortical 5-HT metabolism is increased throughout the lesioned hemisphere of a focally injured brain. The increase in tryptophan content of the lesioned brain appeared to have a time course more closely related to previously demonstrated changes in cortical LCGU than to the increase in 5-HIAA content.  相似文献   

11.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

12.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

13.
The effects of valproic acid (500 mg/kg, ip, 1 h prior to testing) on indole amine metabolism were studied in rats by measurement of the contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebral hemisphere. Tryptophan and 5-HIAA levels were increased, whereas 5-HTP and 5-HT remained unchanged. Furthermore, valproic acid failed to alter the levels of 5-HTP and DOPA, 5-HT and DA, and 5-HIAA in animals pretreated, respectively, with 3-hydroxybenzyl hydrazine (a decarboxylase inhibitor), pargyline (a monoamine oxidase inhibitor), or probenecid (a compound which blocks 5-HIAA transport out of the brain and cerebrospinal fluid). These results militate against the possibility that valproic acid alters the rate of tryptophan hydroxylation or the synthesis of 5-HT. However they do support the concept that valproic acid increases brain 5-HIAA by inhibition of the transport mechanism which removes 5-HIAA from the brain.  相似文献   

14.
An HPLC assay with fluorometric detection has been developed that is sensitive enough to measure simultaneously endogenous levels of tryptophan, serotonin (5-hydroxytryptamine, or 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) inside synaptosomes as well as that released into the incubation medium. Using this assay, we have observed that tryptophan is rapidly taken up by synaptosomes and turned over to 5-HIAA without a concurrent release of 5-HT. Exogenous 5-HT is also rapidly taken up, and, within 20-30 min, 80% of the 5-HT is deaminated. Veratridine induces release of both tryptophan and 5-HT from synaptosomes. Changes in the disposition of exogenous tryptophan or 5-HT can be completely accounted for by uptake or by stoichiometric changes in metabolites. This assay method should be valuable in the study of 5-HT pools and in the determination of from which pool 5-HT release occurs.  相似文献   

15.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

16.
This work examined the influence of the pineal gland and its hormone melatonin on the metabolism of serotonin (5-HT) in discrete areas of the forebrain, such as the Striatum and the nucleus accumbens, and the midbrain raphe. The content of 5-HT and its major oxidative metabolite, the 5-hydroxyindoleacetic acid (5-HIAA), as well as the in-vivo tryptophan hydroxylation rate were examined after long-term pinealectomy (one month) and daily melatonin treatment (500 g/kg; twice daily for ten days) in pinealectomized rats. Pinealectomy did not alter 5-HT content in any of these brain areas, but it significantly increased the content of 5-HIAA in Striatum and the 5-HIAA/5-HT ratio in nucleus accumbens. The normal values of these parameters were recuperated after administration of exogenous melatonin, but it also increased the rate of tryptophan hydroxylation in both areas. In addition, melatonin treatment decreased the levels of 5-HIAA in dorsal raphe nucleus. These data suggest that the pineal gland, through the secretion of melatonin, modulates the local metabolism of 5-HT in forebrain areas by acting on the oxidative deamination. Moreover, melatonin injected in pinealectomized rats derives in a more extended effect than pinealectomy and induces a stimulation of 5-HT synthesis in the striatum, probably due to a pharmacological effect. These results point to the striatum as a target area for the interaction between pineal melatonin and the serotonergic function, and suggest a differential effect of the melatonin injected on areas containing serotonergic terminals and cell bodies, which may relevant for the mode of action of melatonin and its behavioral effects.  相似文献   

17.
Levels of norepinephrine, epinephrine, dopamine, and serotonin (5-HT) and their precursors [tyrosine, L-3,4-dihydroxyphenylalanine, tryptophan, and 5-hydroxytryptophan (5-HTP)] and metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, and 5-hydroxyindoleacetic acid (5-HIAA)] were determined concurrently in samples of chick retina, pineal gland, and nine selected areas of the brain (optic lobes, thalamus, hypothalamus, optic chiasm, pons/medulla, cerebellum, neostriatum/ectostriatum, hyperstriatum, and basal forebrain) using HPLC coupled with a coulometric electrode array detection system. The norepinephrine level was highest in the pineal gland, but it was also widely distributed throughout the chick brain, with the thalamus and hypothalamus showing substantial levels. The dopamine level was highest in the basal forebrain. The epinephrine level was highest in the hypothalamus. The thalamus and hypothalamus showed the highest levels of 5-HT. Daytime levels (1100 h) of these compounds were compared with levels in chicks killed in the middle of the dark phase (2300 h). In the brain areas examined, no day/night variations in levels of norepinephrine, epinephrine, dopamine, or 5-HT were seen, although significant nocturnal changes in levels of their metabolites were observed in some areas. Pineal levels of 5-HIAA decreased significantly at night. The retina showed significant nocturnal increases in 5-HTP, 5-HT, and 5-HIAA levels. Retinal levels of 3-MT and DOPAC were significantly decreased at night.  相似文献   

18.
In 77 percent of patients suffering from a malignant carcinoid syndrome, administration of the somatostatin analog, octreotide (SMS 201-995, Sandostatin) induced clinical improvement coupled with a decrease in 24-hour urinary 5-hydroxyindole acetic acid (5-HIAA). This finding prompted an evaluation to determine the correlation between the presence of somatostatin receptors in tumor tissue and the response to octreotide in patients with advanced, metastatic, neuroendocrine tumors. In tissues of 31 tumors (20 carcinoid, eight islet-cell carcinoma, three medullary thyroid carcinomas), the presence of somatostatin receptors was analyzed by binding of the somatostatin analog 125I-Tyr3-SMS 201-995 and autoradiography. Receptors were detected in 16 of 20 samples of carcinoid tissues; all but one patient with receptor-positive tumors improved clinically after treatment with octreotide, and the urine 5-HIAA level was reduced a median of 63 percent (range, 39-94 percent) compared to values before treatment. Of the receptor-negative carcinoid patients, only one showed clinical improvement, which was minimal, and there was a negligible reduction in 5-HIAA after octreotide therapy. All eight patients with metastatic islet-cell carcinomas were positive for somatostatin receptors. Symptomatic improvement and a > 50 percent decrease in the level of at least one of the pathologically elevated marker hormones was seen in all eight. None of the three patients with medullary carcinoma of the thyroid had a decrease in calcitonin, and all three were initially somatostatin receptor-negative. We conclude that the presence of somatostatin receptors in malignant neuroendocrine tumor tissue appears to correlate with the response to octreotide therapy. Analysis of somatostatin receptors in malignant neuroendocrine carcinoma tissue should be included in future prospective clinical trials of this synthetic peptide.  相似文献   

19.
Loeffler  D.A.  LeWitt  P.A.  Juneau  P.L.  Camp  D.M.  DeMaggio  A.J.  Havaich  M.K.  Milbury  P.E.  Matson  W.R. 《Neurochemical research》1998,23(12):1521-1525
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

20.
Following a study of oxidative tryptophan metabolism to kynurenines, we have now analysed the blood of patients with either Huntington's disease or traumatic brain injury for levels of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and melatonin. There were no differences in the baseline levels of these compounds between patients and healthy controls. Tryptophan depletion did not reduce 5-HT levels in either the controls or in the patients with Huntington's disease, but it increased 5-HT levels in patients with brain injury and lowered 5-HIAA in the control and Huntington's disease groups. An oral tryptophan load did not modify 5-HT levels in the patients but increased 5-HT in control subjects. The tryptophan load restored 5-HIAA to baseline levels in controls and patients with brain injury, but not in those with Huntington's disease, in whom 5-HIAA remained significantly depressed. Melatonin levels increased on tryptophan loading in all subjects, with levels in patients with brain injury increasing significantly more than in controls. Baseline levels of neopterin and lipid peroxidation products were higher in patients than in controls. It is concluded that both groups of patients exhibit abnormalities in tryptophan metabolism, which may be related to increased inflammatory status and oxidative stress. Interactions between the kynurenine, 5-HT and melatonin pathways should be considered when interpreting changes of tryptophan metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号