首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superintegrons (SIs) and multiresistant integrons (MRIs) have two main structural differences: (i) the SI platform is sedentary, while the MRI platform is commonly associated with mobile DNA elements and (ii) the recombination sites (attC) of SI gene cassette clusters are highly homogeneous, while those of MRI cassette arrays are highly variable in length and sequence. In order to determine if the latter difference was correlated with a dissimilarity in the recombination activities, we conducted a comparative study of the integron integrases of the class 1 MRI (IntI1) and the Vibrio cholerae SI (VchIntIA). We developed two assays that allowed us to independently measure the frequencies of cassette deletion and integration at the cognate attI sites. We demonstrated that the range of attC sites efficiently recombined by VchIntIA is narrower than the range of attC sites efficiently recombined by IntI1. Introduction of mutations into the V. cholerae repeats (VCRs), the attC sites of the V. cholerae SI cassettes, allowed us to map positions that affected the VchIntIA and IntI1 activities to different extents. Using a cointegration assay, we established that in E. coli, attI1-x-VCR recombination catalyzed by IntI1 was 2,600-fold more efficient than attIVch-x-VCR recombination catalyzed by VchIntIA. We performed the same experiments in V. cholerae and established that the attIVch-x-VCR recombination catalyzed by VchIntIA was 2,000-fold greater than the recombination measured in E. coli. Taken together, our results indicate that in the V. cholerae SI, the substrate recognition and recombination reactions mediated by VchIntIA might differ from the class 1 MRI paradigm.  相似文献   

2.
3.
Discovery and distribution of super-integrons among Pseudomonads   总被引:14,自引:0,他引:14  
Until recently, integrons (systems for acquisition and expression of new genetic materials) have been associated generally with antibiotic resistance gene cassettes. The discovery of 'super-integrons' in Vibrionaceae suggests a greater impact of this gene acquisition mechanism on bacterial genome evolution than initially believed. Super-integrons may contain more than 100 gene cassettes and may encode other determinants, including biochemical functions or virulence factors. Here, we report the genetic organization of a super-integron from Pseudomonas alcaligenes ATCC 55044. This is the first evidence of a super-integron in a non-pathogenic bacterium, one which is widely distributed in a great number of ecological niches such as soil and aquatic habitats. Here, the sequence composition, open reading frame (ORF) content and organization of In55044 are described and found to have features intermediate between the multidrug-resistant integrons and the Vibrio cholerae super-integron. Similar structures are inferred to be present in several Pseudomonas species, based on polymerase chain reaction (PCR) experiments.  相似文献   

4.
Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era."  相似文献   

5.
As a major concern in public health, methicillin-resistant staphylococci (MRS) still remains one of the most prevalent pathogens that cause nosocomial infections throughout the world and has been recently labeled as a “super bug” in antibiotic resistance. Thus, surveillance and investigation on antibiotic resistance mechanisms involved in clinical MRS strains may raise urgent necessity and utmost significance. As a novel antibiotic resistance mechanism, class 1 integron has been identified as a primary source of antimicrobial resistance genes in Gram-negative organisms. However, most available studies on integrons had been limited within Gram-negative microbes, little is known for clinical Gram-positive bacteria. Based on series studies of systematic integrons investigation in hundreds of staphylococci strains during 2001–2006, this review concentrated on the latest development of class 1 integron in MRS isolates, including summary of prevalence and occurrence of class 1 integron, analysis of correlation between integron and antibiotic resistance, further demonstration of the role integrons play as antibiotic determinants, as well as origin and evolution of integron-associated gene cassettes during this study period.  相似文献   

6.
A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Microbiol. 66:4908-4915, 2000), the predominant resistance phenotype (37%) being a combined oxytetracycline (OTC) and sulphadiazine/trimethoprim resistance. Combined sulphonamide/trimethoprim resistance (135 isolates) appeared closely related to the presence of a class 1 integron (141 strains). Among the isolates containing integrons, four different combinations of integrated resistance gene cassettes occurred, in all cases including a dihydrofolate reductase gene and a downstream aminoglycoside resistance insert (87 isolates) and occasionally an additional chloramphenicol resistance gene cassette (31 isolates). In addition, 23 isolates had "empty" integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class 1 integron. Out of 17 successful R-plasmid transfers to Escherichia coli recipients, the respective integrons were cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetA positive (10 of 17) and contained class 1 integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R-plasmids and tetA among the OTC-resistant aeromonads, tetE and the unclassified OTC resistance genes as well as class 1 integrons were equally distributed among isolates with and without plasmids. These findings indicate the implication of other mechanisms of gene transfer besides plasmid transfer in the dissemination of antibiotic resistance among environmental motile aeromonads.  相似文献   

7.
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.  相似文献   

8.
Gene cassettes and cassette arrays in mobile resistance integrons   总被引:7,自引:0,他引:7  
Gene cassettes are small mobile elements, consisting of little more than a single gene and recombination site, which are captured by larger elements called integrons. Several cassettes may be inserted into the same integron forming a tandem array. The discovery of integrons in the chromosome of many species has led to the identification of thousands of gene cassettes, mostly of unknown function, while integrons associated with transposons and plasmids carry mainly antibiotic resistance genes and constitute an important means of spreading resistance. An updated compilation of gene cassettes found in sequences of such 'mobile resistance integrons' in GenBank was facilitated by a specially developed automated annotation system. At least 130 different (<98% identical) cassettes that carry known or predicted antibiotic resistance genes were identified, along with many cassettes of unknown function. We list exemplar GenBank accession numbers for each and address some nomenclature issues. Various modifications to cassettes, some of which may be useful in tracking cassette epidemiology, are also described. Despite potential biases in the GenBank dataset, preliminary analysis of cassette distribution suggests interesting differences between cassettes and may provide useful information to direct more systematic studies.  相似文献   

9.
运用PCR技术及克隆文库方法,对一个实验室规模的喹啉降解反应器生物膜系统中的整合子进行了分析。结果表明,在该反硝化喹啉降解反应器的生物膜群落中,整合子携带着丰富多样的基因盒。主要为编码与抗生素耐药性相关的基因盒,如氨基糖苷类耐药基因(aadA基因等),也带有与工业废水环境发现的整合子中可能与芳香族化合物降解有关的基因(如FldF基因)。还有一些功能未知的基因。鉴于耐药性相关基因的广泛存在,对该反应器中分离的优势菌株进行了耐药性分析。结果表明,44.1%的菌株存在耐药性,29.4%的菌株有多重耐药性。它们对4种抗生素的耐药率分别为:氨苄青霉素29.4%、卡那霉素23.5%、氯霉素20.6%、链霉素23.5%。不存在抗生素选择压力环境的微生物群落中分离的群落优势菌株普遍具有抗生素耐药性,而且群落基因组的整合子中携带多种抗生素抗性基因的基因盒。这一现象还未曾见报道,其成因值得进一步研究。  相似文献   

10.
Integrons are unique natural systems for capturing and spreading the antibiotic resistance genes among Gram-negative bacteria. Gene transfer into small genomes and into plasmids is via site-specific recombination. Integrons act as receptors of antibiotic resistance cassettes. There are known more than 50 cassettes conferring resistance to beta-lactams, aminoglycosides, trimethoprim, chloramphenicol, streptomycin, and other antibiotics. The structure of integrons and of gene cassettes are described and the mechanisms of capture, mobilization, and expression of cassettes considered.  相似文献   

11.
Two hundred and twenty-six Salmonella enterica serotype Typhimurium isolates were examined for the presence of integron-associated gene cassettes. All but two of the non-DT104 isolates, together with DT104 isolates, contained gene cassettes. Amplicons of 1.5 kbp each were found in two non-DT104 isolates, encoding a dhfrI gene (trimethoprim resistance) linked to an aadA gene (streptomycin and spectinomycin resistance), by site-specific recombination. DT104 isolates of resistance (R) type ACSSuT possessed the recently described 1.0- and 1.2-kbp gene cassettes. Macrorestriction analysis with XbaI and DNA probing mapped ant(3")-1a, bla(PSE-1), and dhfrI genes to large multiresistant gene clusters in a DT170a isolate and a DT193 isolate. In contrast, all DT104 isolates (R-type ACSSuT) possessed a conserved 10-kbp Xba1 DNA fragment. Our study highlights the occurrence of integrons (and antimicrobial resistance determinants) among serotype Typhimurium isolates other than DT104. Larger and previously unrecognized multiresistance gene clusters were identified in these isolates by DNA probing.  相似文献   

12.
Mindlin SZ  Petrova MA  Bass IA  Gorlenko ZhM 《Genetika》2006,42(11):1495-1511
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic producers, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

13.
Salmonella are well-known pathogens. Virulence determinants can be present on the chromosome, usually encoded on pathogenicity islands, or on plasmids and bacteriophages. Antibiotic resistance determinants usually are encoded on plasmids, but can also be present on the multidrug resistance region of Salmonella Genomic Island 1 (SGI1). Virulence plasmids show a remarkable diversity in the combination of virulence factors they encode, which appears to adapt them to specific hosts and the ability to cause gastroenteritidis or systemic disease. The appearance of plasmids with two replicons may help to extend the host range of these plasmids and thereby increase the virulence of previously non- or low pathogenic serovars. Antibiotic resistance among Salmonella is also increasing. This increase is not only in the percentage isolates resistant to a particular antibiotic, but also the development of resistance against newer antibiotics. The increased occurrence of integrons is particularly worrying. Integrons can harbour a varying set of antibiotic resistance encoding gene cassettes. Gene cassettes can be exchanged between integrons. Although the gene cassettes currently present in Salmonella integrons encode for older antibiotics (however, some still frequently used) gene cassettes encoding resistance against the newest antibiotics has been documented in Enterobacteriaceae. Furthermore, beta-lactamases with activity against broad-spectrum cephalosporins, which are often used in empiric therapy, have been found associated with integrons. So, empiric treatment of Salmonella infections becomes increasingly more difficult. The most worrisome finding is that virulence and resistance plasmids form cointegrates. These newly formed plasmids can be selected by antibiotic pressure and thereby for virulence factors. Taken together these trends may lead to more virulent and antibiotic-resistant Salmonella.  相似文献   

14.
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.  相似文献   

15.
Ke X  Gu B  Pan S  Tong M 《Archives of microbiology》2011,193(11):767-774
Integrons are gene capture and expression systems that are characterized by the presence of an integrase gene. This encodes an integrase, a recombined site, and a promoter. They are able to capture gene cassettes from the environment and incorporate them using site-specific recombination. The role of integrons and gene cassettes in the dissemination of multidrug resistance in Gram-negative bacteria is significant. In Shigella species, antimicrobial resistance is often associated with the presence of class 1 and class 2 integrons that contain resistance gene cassettes. Multiple and complex expression regulation mechanisms involving mobile genetic elements in integrons have been developed in the evolution of Shigella strains. Knowledge of the epidemiology and molecular mechanisms of antimicrobial resistance in this important pathogen is essential for the implementation of intervention strategies. This review was conducted to introduce the structures and functions of integrons in Shigella species and mechanisms that control integron-mediated events linked to antibiotic resistance.  相似文献   

16.
Integrons are unique natural systems for capturing and spreading the antibiotic resistance genes among Gram-negative bacteria. Gene transfer into small genomes and into plasmids is via site-specific recombination. Integrons act as receptors of antibiotic resistance cassettes. There are known more than 50 cassettes conferring resistance to -lactams, aminoglycosides, trimethoprim, chloramphenicol, streptomycin, and other antibiotics. The structure of integrons and of gene cassettes are described and the mechanisms of capture, mobilization, and expression of cassettes considered.  相似文献   

17.
Superintegrons (SIs) are chromosomal genetic elements containing assemblies of genes, each flanked by a recombination sequence (attC site) targeted by the integron integrase. SIs may contain hundreds of attC sites and intrinsic instability is anticipated; yet SIs are remarkably stable. This implies that either selective pressure maintains the genes or mechanisms exist which favour their persistence in the absence of selection. Toxin/antitoxin (TA) systems encode a stable toxin and a specific, unstable antitoxin. Once activated, the continued synthesis of the unstable antitoxin is necessary for cell survival. A bioinformatic search of accessible microbial genomes for SIs and TA systems revealed that large SIs harboured TA gene cassettes while smaller SIs did not. We demonstrated the function of TA loci in different genomic contexts where large-scale deletions can occur; in SIs and in a 165 kb dispensable region of the Escherichia coli genome. When devoid of TA loci, large-scale genome loss was evident in both environments. The inclusion of two TA loci, relBE1 and parDE1, which we identified in the Vibrio vulnificus SI rendered these environments refractory to gene loss. Thus, chromosomal TA loci can stabilize massive SI arrays and limit the extensive gene loss that is a hallmark of reductive evolution.  相似文献   

18.
Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed.  相似文献   

19.
Using an enrichment protocol, we isolated 16 gram-negative, multidrug-resistant strains of known or opportunistic bacterial pathogens from the Salmon River in south-central British Columbia from 2005 to 2009, and investigated the genetic basis of their resistance to a variety of antibiotics. Of the 16 strains, 13 carried class 1 integrons and three carried class 2 integrons. Genes found in cassettes associated with the integrons included those for dihydrofolate reductases (dfrA1, dfrA12, dfrA17, and dfrB7), aminoglycoside adenyltransferases (aadA1, aadA2, aadA5, and aadB), streptothricin acetyltransferase (sat), and hypothetical proteins (orfF and orfC). A new gene cassette of unknown function, orf1, was discovered between dfrA1 and aadA5 in Escherichia sp. Other genes for resistance to tetracycline, chloramphenicol, streptomycin, and kanamycin (tetA, tetB, tetD; catA; strA-strB; and aphA1-Iab, respectively) were outside the integrons. Several of these resistance determinants were transferable by conjugation. The detection of organisms and resistance determinants normally associated with clinical settings attest to their widespread dispersal and suggest that regular monitoring of their presence in aquatic habitats should become a part of the overall effort to understand the epidemiology of antibiotic resistance genes in bacteria.  相似文献   

20.
The review is focussed on two types of gene cassettes which are significant in bacterial variability. The first type are cassettes with antibiotic resistance genes; these are the smallest mobile genetic elements including a gene (most commonly an antibiotic resistance gene) and a short sequence acting as a recombination site. Sometimes these cassettes contain genes not responsible for antibiotic resistance but their functions are not yet known. The second type contains large clusters of genes coding for bacterial virulence factors. They were termed "pathogenicity islands" due to their difference in the percentage of G-C pairs in comparison with bacterial chromosomes, in which they are contained. The structural organization and mechanisms of mobility of various types of gene cassettes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号