首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30-80 Hz) and very fast oscillations (VFOs, 80-160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABA(A) receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur.  相似文献   

4.
In the rodent cerebellum, PACAP is expressed by Purkinje neurons and PAC1 receptors are present on granule cells during both the development period and in adulthood. Treatment of granule neurons with PACAP inhibits proliferation, slows migration, promotes survival and induces differentiation. PACAP also protects cerebellar granule cells against the deleterious effects of neurotoxic agents. Most of the neurotrophic effects of PACAP are mediated through the cAMP/PKA signaling pathway and often involve the ERK MAPkinase. Caspase-3 is one of the key enzymes implicated in the neuroprotective action of PACAP but PACAP also inhibits caspase-9 activity and increases Bcl-2 expression. PACAP and functional PAC1 receptors are expressed in the monkey and human cerebellar cortex with a pattern of expression very similar to that described in rodents, suggesting that PACAP could also exert neurodevelopmental and neuroprotective functions in the cerebellum of primates including human.  相似文献   

5.
Recent mutation studies in Arabidopsis suggest rules by which the primary organization of the plant body is established in the early embryo. The main types of plant tissue arise independently of pattern formation along the axis of polarity. The axis is initially partitioned into three regions. This prepattern is later refined, possibly by position-specific cell activities, as indicated by morphological features as well as the distribution of molecular markers.  相似文献   

6.
In recent years, the classical approaches of experimental embryology have been used in combination with more modern techniques to investigate aspects of neurogenesis. This combination has advanced our knowledge of several areas of neuronal development, including the lineages of neuronal precursors, the segmentation of the nervous system, and the patterning of the neural tube.  相似文献   

7.
Summary The myelination of the cerebellar cortex of the cat was investigated in 61 cats aged from 3 hrs post partum to two and a half years. The first myelinated fibers appear at the time of birth in the central medullary ray. Before the onset of myelination, all fibers reach a critical diameter of about 1 m. About the 14th day of life the number of oligodendrocytes in the prospective white matter increases markedly. Thereafter, the oligodendrocytes invade the inner granular layer. It therefore seems that the myelination of the cerebellar cortex proceeds from the central medullary ray towards the granular layer. At the 60th day of postnatal life, most of the afferent and efferent fiber systems are myelinated. These findings are discussed in relation to the development of function and the maturation of the electrical activity of the cerebellar circuit.Dedicated to Prof. Dr. H. Leonhardt in honour of his 60th birthdaySupported by the Deutsche Forschungsgemeinschaft (La 184/3)  相似文献   

8.
9.
10.
The function of Golgi cells in the cerebellar cortex is quantitatively examined in consideration of the nonlinear input-output characteristics and convergence and divergence numbers of cells. It is strongly suggested that the two signal paths to Golgi cells have different function. The feed-forward path will have the same function as assumed in the previous theories of the cerebellar cortex, that is, to keep the firing rate of granule cells approximately constant over considerable variation in the firing rate of mossy fibers. The feedback path will, on the other hand, have a new function which has not been assumed in the previous theories. The function is to cause oscillation of the firing rate of granule cells for stationary mossy fiber inputs. The assumption of the new function enables us to explain cerebellar function to keep stationary posture.  相似文献   

11.
Hawkes R  Mascher C 《Acta anatomica》1994,151(3):139-149
The cerebellum is subdivided into hundreds of discrete modules defined by their connectivity and molecular signatures. Cerebellar compartmentation arises very early in development through the formation of multiple populations of chemically distinct Purkinje cells that migrate in a coordinated fashion to form parasagittal bands of cells. Different Purkinje cell bands are then innervated by discrete subpopulations of cerebellar afferents. Because of its stereotyped and strikingly beautiful organization the cerebellum is an excellent model in which to explore genetic/epigenetic aspects of pattern formation in the central nervous system.  相似文献   

12.
13.
We recorded the activity of two types of granular cells in the rostral folia of the paramedial lobe (the projection region of the front legs) of the cerebellar cortex in cats immobilized by administration of ditiline; these cells differed in their receptive fields, the characteristics of their reaction to single stimulation of somatic nerves, and the character of their background activity. The granular cells of the first type were excited only when the nerves of the front legs were stimulated (reacting with 1–3 impulses with a latent period of 8–20 msec) and were inhibited between 20–50 and 70–180 msec after stimulation of the nerves of any leg. The cells of the second type responded with volleys of 3–6 impulses with a latent period of 20–40 msec to stimulation of the nerves of all four legs. Comparison of the reactions of the granular cells and other neurons of the cerebellar cortex showed that the cells of the first type cause excitation of the Purkinje and Golgi cells and the neurons of the molecular layer. The granular cells of the second type have an excitatory effect on the Golgi cells. The differences in the reactions of the two types of granular cells result from the fact that they are selectively innervated by the mossy fibers of different afferent pathways. Comparison with the data in the literature enables us to surmise that the fibers of the cuneocerebellar tract terminate at granular cells of the first type, while the reticular fibers terminate at cells of the second type.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 167–176, September–October, 1969.  相似文献   

14.
Modification of the histochemical method for detection of GABA-transaminase activity is suggested. Optimal concentrations of the substrates and cofactors are chosen on the basis of kinetic study of the enzymatic reaction in the cryostat sections of the rat cerebellar cortex by the quantitative microspectrophotometric method. The method is intended for the quantitative histochemical analysis of GABA-transaminase activity in the brain sections.  相似文献   

15.
Cerebellar high-frequency oscillations have been observed for many decades, but their underlying mechanisms have remained enigmatic. In this issue of Neuron, two papers indicate that specific intrinsic mechanisms in the cerebellar cortex contribute to the generation of these oscillations. Middleton et al. show that GABA(A) receptor activation and nonchemical transmission are required for nicotine-dependent oscillations at 30-80 Hz and 80-160 Hz, respectively, while de Solages et al. provide evidence that recurrent inhibition by Purkinje cells is essential for oscillations around 200 Hz.  相似文献   

16.
The content and distribution of catecholamine-containing formations in the cerebellum of untreated and heroin-treated male rats, was visualized by glyoxylic acid-induced histofluorescence, in an attempt to define the adaptive mechanisms leading to heroin dependent tolerance as well as identify a biological role for these formations. Repeated heroin administration increased the number of specifically organized intracellular catecholamine containing particles, including grain (diameter less than 0.8 microm) and aggregate (diameter greater than 1 microm) forms, in all cerebellar cortical layers examined one hour after the last injection of the drug, relative to controls. The number of grains in all cerebellar cortical layers examined and aggregates in the granular layer, returned to normal or near normal baseline levels within twenty four hours after the last injection of the drug. The analogous baseline of the aggregates in the Purkinje cell layer primarily and the Molecular layer secondarily remained significantly elevated by 86% and 50% respectively, relative to controls. Catecholamine-heroin interactions most likely mediated this elevation that was related directly to the heroin-dependent state of tolerance. These findings indicate that heroin administration to heroin-tolerant rats leads to the formation of unusually large intracellular aggregates with catecholamines in the Purkinje cells of the cerebellum primarily and support a direct role for these formations in the modulation of biogenic amine bioavailability. We conclude that adaptation to drug exposure involves multiple homeostatic interactions, with sympathetic activation at the level of catecholamine reorganization and redistribution playing a major role in rat cerebellar cortex.  相似文献   

17.
Pattern formation in the lateral line of zebrafish.   总被引:1,自引:0,他引:1  
The lateral line of fish and amphibians is a sensory system that comprises a number of individual sense organs, the neuromasts, arranged in a defined pattern on the surface of the body. A conspicuous part of the system is a line of organs that extends along each flank (and which gave the system its name). At the end of zebrafish embryogenesis, this line comprises 7-8 neuromasts regularly spaced between the ear and the tip of the tail. The neuromasts are deposited by a migrating primordium that originates from the otic region. Here, we follow the development of this pattern and show that heterogeneities within the migrating primordium prefigure neuromast formation.  相似文献   

18.
An indirect immunocytofluorescence technique was used to examine the distribution of the prostaglandin-forming cyclooxygenase in the cerebellar cortex of the pig, guinea, rat, mouse, cow, rabbit and sheep. Cyclooxygenase antigenicity was detected (a) in the cell bodies of Bergman glial cells in the Purkinje cell layer of the porcine, ovine and bovine cerebellar cortex; (b) in small arterioles throughout the cerebellar cortex in the sheep and cow; and (c) in the endothelial cells of large arteries in all the species examined. No cyclooxygenase-positive staining was apparent in neuronal cell bodies of granule, basket, stellate or Purkinje cells. Our results establish that prostaglandin endoperoxides can be synthesized by the arterial vasculature and at least certain glial cells in the central nervous system.  相似文献   

19.
An indirect immunocytofluorescence technique was used to examine the distribution of the prostaglandin-forming cyclooxygenase in the cerebellar cortex of the pig, guinea pig, rat, mouse, cow, rabbit and sheep. Cyclooxygenase antigenicity was detected (a) in the cell bodies of Bergman glial cells in the Purkinje cell layer of the porcine, ovine and bovine cerebellar cortex; (b) in small arterioles throughout the cerebellar cortex in the sheep and cow; and (c) in the endothelial cells of large arteries in all the species examined. No cyclooxygenase-positive staining was apparent in neuronal cell bodies of granule, basket, stellate or Purkinje cells. Our results establish that prostaglandin endoperoxides can be synthesized by the arterial vasculature and at least certain glial cells in the central nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号