共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Protein export systems derived from prokaryotes are used to transport proteins into or across the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoid membrane. Signal recognition particle (SRP) and its receptor are essential components used exclusively for cotranslational export of endomembrane and secretory proteins to the endoplasmic reticulum in eukaryotes and export of polytopic membrane proteins to the cytoplasmic membrane in prokaryotes. An organellar SRP in chloroplasts (cpSRP) participates in cotranslational targeting of chloroplast synthesized integral thylakoid proteins. Remarkably, cpSRP is also used to posttranslationally localize a subset of nuclear encoded thylakoid proteins. Recent work has begun to reveal the basis for cpSRP's unique ability to function in co- and posttranslational protein localization, yet much is left to question. This review will attempt to highlight these advances and will also focus on the role of other soluble and membrane components that are part of this novel organellar SRP targeting pathway. 相似文献
3.
A folded protein can be transported across the chloroplast envelope and thylakoid membranes. 总被引:10,自引:0,他引:10
下载免费PDF全文

Many thylakoid lumenal proteins are nuclear encoded, cytosolically synthesized, and reach their functional location after posttranslational targeting across two chloroplast envelope membranes and the thylakoid membrane via proteinaceous transport systems. To study whether these transmembrane transport machineries can translocate folded structures, we overexpressed the 17-kDa subunit of the oxygen-evolving complex of photosystem II (prOE17) that had been modified to contain a unique C-terminal cysteine. This allowed us to chemically link a terminal 6.5-kDa bovine pancreatic trypsin inhibitor (BPTI) moiety to prOE17 to create the chimeric protein prOE17-BPTI. Redox reagents and an irreversible sulfhydryl-specific cross-linker, bis-maleimidohexane, were used to manipulate the structure of BPTI. Import of prOE17-BPTI into isolated chloroplasts and thylakoids demonstrates that the small tightly folded BPTI domain is carried across both the chloroplast envelopes and the delta pH-dependent transmembrane transporter of the thylakoid membrane when linked to the correctly targeted OE17 precursor. Transport proceeded even when the BPTI moiety was internally cross-linked into a protease-resistant form. These data indicate that unfolding is not a ubiquitous requirement for protein translocation and that at least some domains of targeted proteins can maintain a nonlinear structure during their translocation into and within chloroplasts. 相似文献
4.
In vivo visualization of Mg-protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast 总被引:1,自引:0,他引:1
下载免费PDF全文

The photosynthetic apparatus is composed of proteins encoded by genes from both the nucleus and the chloroplast. To ensure that the photosynthetic complexes are assembled stoichiometrically and to enable their rapid reorganization in response to a changing environment, the plastids emit signals that regulate nuclear gene expression to match the status of the plastids. One of the plastid signals, the chlorophyll intermediate Mg-ProtoporphyrinIX (Mg-ProtoIX) accumulates under stress conditions and acts as a negative regulator of photosynthetic gene expression. By taking advantage of the photoreactive property of tetrapyrroles, Mg-ProtoIX could be visualized in the cells using confocal laser scanning spectroscopy. Our results demonstrate that Mg-ProtoIX accumulated both in the chloroplast and in the cytosol during stress conditions. Thus, the signaling metabolite is exported from the chloroplast, transmitting the plastid signal to the cytosol. Our results from the Mg-ProtoIX over- and underaccumulating mutants copper response defect and genome uncoupled5, respectively, demonstrate that the expression of both nuclear- and plastid-encoded photosynthesis genes is regulated by the accumulation of Mg-ProtoIX. Thus, stress-induced accumulation of the signaling metabolite Mg-ProtoIX coordinates nuclear and plastidic photosynthetic gene expression. 相似文献
5.
IgE-binding protein. Subcellular location and gene expression in many murine tissues and cells 总被引:5,自引:0,他引:5
C A Gritzmacher M W Robertson F T Liu 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(8):2801-2806
We show that IgE-binding protein (epsilon BP) is found primarily in the cytoplasm of rat basophilic leukemia (RBL) cells and COS-1 cells transfected with epsilon BP cDNA. Antibodies to a synthetic peptide internal to epsilon BP were generated that specifically recognized epsilon BP by protein immunoblotting. These antibodies also bind the surface of RBL cells. Surprisingly, blot hybridization analysis of RNA from nine various normal rat tissues showed that the epsilon BP gene is transcribed in all the tissues tested as well as in a mouse macrophage-like cell line. 相似文献
6.
The effects of tentoxin on the ATPase activities of coupling factor 1 proteins (CF1) and photophosphorylation with isolated chloroplasts and chloroplasts reconstituted with coupling factor proteins have been examined. 1. The calcium-dependent ATPase activities of coupling factors isolated from spinach, lettuce and Nicotiana otophora are completely inhibited by tentoxin. The ATPase activities of coupling factors isolated from Nicotiana tabacum and Nicotiana knightiana are not affected by tentoxin. 2. Phenazine methosulfate-catalyzed cyclic photophosphorylation with chloroplasts isolated from spinach, lettuce and N. otophora is completely inhibited by tentoxin, whereas chloroplasts isolated from N. knightiana and N. tabacum are relatively insensitive to tentoxin. 3. Spinach chloroplasts, partially depleted in CF1, can be reconstituted with coupling factors isolated from a wide variety of plants including lettuce, radish, N. tabacum, N. knightiana and N. otophora. 4. Spinach chloroplasts reconstituted with spinach, lettuce and N. otophora CF1 retain their sensitivity to tentoxin; however, when reconstituted with N. knightiana and N. tabacum coupling factor proteins, a significant fraction of the reconstituted rate remains tentoxin insensitive. These data are interpreted as evidence that coupling factors that reconstitute with spinach thylakoid membranes have both a catalytic and structural function. 相似文献
7.
8.
A novel multi-functional chloroplast protein: identification of a 40 kDa immunophilin-like protein located in the thylakoid lumen. 总被引:11,自引:0,他引:11
下载免费PDF全文

We describe the identification of the first immunophilin associated with the photosynthetic membrane of chloroplasts. This complex 40 kDa immunophilin, designated TLP40 (thylakoid lumen PPIase), located in the lumen of the thylakoids, was found to play a dual role in photosynthesis involving both biogenesis and intraorganelle signalling. It originates in a single-copy nuclear gene, is made as a precursor of 49.2 kDa with a bipartite lumenal targeting transit peptide, and is characterized by a structure including a cyclophilin-like C-terminal segment of 20 kDa, a predicted N-terminal leucine zipper and a potential phosphatase-binding domain. It can exist in different oligomeric conformations and attach to the inner membrane surface. It is confined predominantly to the non-appressed thylakoid regions, the site of protein integration into the photosynthetic membrane. The isolated protein possesses peptidyl-prolyl cis-trans isomerase protein folding activity characteristic of immunophilins, but is not inhibited by cyclosporin A. TLP40 also exerts an effect on dephosphorylation of several key proteins of photosystem II, probably as a constituent of a transmembrane signal transduction chain. This first evidence for a direct role of immunophilins in a photoautotrophic process suggests that light-mediated protein phosphorylation in photosynthetic membranes and the role of the thylakoid lumen are substantially more complex than anticipated. 相似文献
9.
10.
11.
12.
Experimental evidence indicates that the major pathway of retinoic acid metabolism in hamster liver microsomes follows the sequence: retinoic acid → 4-hydroxy-retinoic acid → 4-keto-retinoic acid → more polar metabolites. Using all-trans-[10-3H]retinoic acid, it can be shown by reverse-phase high pressure liquid chromatographic analysis that the first and last steps of this sequence require NADPH, whereas the oxidation of 4-hydroxy to 4-keto-retinoic acid is NAD+ (or NADP+) dependent. Both NADPH-dependent steps, but not the NAD+-dependent dehydrogenase reaction, are strongly inhibited by carbon monoxide. The metabolism of retinoic acid but not of 4-hydroxy-retinoic acid is highly dependent on the vitamin A regimen of the animal. Retinoic acid is rapidly metabolized by liver microsomes either from vitamin A-normal hamsters or from vitamin A-deficient hamsters that have been pretreated with retinoic acid, but not by microsomes from vitamin A-deficient animals; in direct contrast, the rate of metabolism of 4-hydroxy-retinoic acid is equivalent in each of these microsomal preparations. Analysis of the kinetics of these reactions yields the following Michaelis constants with respect to the retinoid substrates: retinoic acid, 1 × 10?6m; 4-hydroxy-retinoic acid, 2 × 10?5m; and 4-keto-retinoic acid, 1 × 10?7m. The 4-hydroxy to 4-keto-retinoic acid oxidation has been shown to be experimentally irreversible, to have a KmNAD+of 2 × 10?5m, to be strongly inhibited by NADH, and to be unaffected by the presence of retinoic acid or its 4-keto-derivative in an equimolar ratio to the 4-hydroxy-substrate. 相似文献
13.
14.
15.
In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus 总被引:2,自引:0,他引:2
Roderick G. Bonfiglioli Geoffrey I. McFadden Robert H. Symons 《The Plant journal : for cell and molecular biology》1994,6(1):99-103
Viroids, small single-stranded circular RNA molecules, are the smallest known infectious agents in Nature. The apparent inability of viroids to encode for proteins means that they must rely fully on host functions for their replication. The specific ultrastructural localization of viroids is fundamental to the determination of their replication strategies. In this paper the first in situ hybridization study to localize viroids within the cell at the electron microscope level is reported. Biotin-labelled RNA probes were used with subsequent detection by gold-labelled monoclonal anti-biotin antibodies to localize avocado sunblotch viroid and coconut cadang cadang viroid. Avocado sunblotch viroid was located in chloroplasts, mostly on the thylakoid membranes of cells from infected leaves of avocado (Persea americana). In contrast, coconut cadang cadang viroid was located in the nucleolus and nucleoplasm of cells of infected leaves of oil palm (Elaeis guineensis), with a higher concentration in the nucleolus. The results provide insight on the potential host RNA polymerases involved in the replication of these two viroids. 相似文献
16.
Chen MC Hong MC Huang YS Liu MC Cheng YM Fang LS 《Biochemical and biophysical research communications》2005,338(3):1607-1616
Endosymbiotic association of the Symbiodinium dinoflagellates (zooxanthellae) with their cnidarian host cells involves an alteration in the development of the alga-enclosing phagosomes. To uncover its molecular basis, we previously investigated and established that the intracellular persistence of the zooxanthella-containing phagosomes involves specific alga-mediated interference with the expression of ApRab5 and ApRab7, two key endocytic regulatory Rab proteins, which results in the selective retention of the former on and exclusion of the later from the organelles. Here we examined the role of ApRab11, a cnidarian homologue of the key endocytic recycling regulator, Rab11, in the Aiptasia-Symbiodinium endosymbiosis. ApRab11 protein shared 88% overall sequence identity with human Rab11A and contained all Rab-specific signature motifs. Co-localization and mutagenesis studies showed that EGFP-tagged ApRab11 was predominantly associated with recycling endosomes and functioned in the recycling of internalized transferrin. In phagocytosis of latex beads, ApRab11 was quickly recruited to and later gradually removed from the developing phagosomes. Significantly, although ApRab11 immunoreactivity was rapidly detected on the phagosomes containing either newly internalized, heat-killed zooxanthellae, or resident zooxanthellae briefly treated with the photosynthesis inhibitor DCMU, it was rarely observed in the majority of phagosomes containing either newly internalized live, or healthy resident, zooxanthellae. It was concluded that through active exclusion of ApRab11 from the phagosomes in which they reside, zooxanthellae interfere with the normal recycling process required for efficient phagosome maturation, and thereby, secure their intracellular persistence, and consequently their endosymbiotic relationship with their cnidarian hosts. 相似文献
17.
Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. 总被引:16,自引:3,他引:16
下载免费PDF全文

The Polycomb group and trithorax group genes of Drosophila are required for maintaining the differential expression state of developmental regulators, such as the homeotic genes, in a stable and heritable manner throughout development. The Polycomb group genes have been suggested to act by regulating higher order chromatin and packaging repressed chromosomal domains in a heterochromatin-like structure. We have mapped, at high resolution, the distribution of Polycomb protein on the bithorax complex of Drosophila tissue culture cells, using an improved formaldehyde cross-linking and immunoprecipitation technique. Polycomb protein is not distributed homogeneously on the regulatory regions of the repressed Ultrabithorax and abdominal-A genes, but is highly enriched at discrete sequence elements, many of which coincide with previously mapped Polycomb group response elements (PREs). Our results further suggest that Polycomb protein spreads locally over a few kilobases of DNA surrounding PREs, perhaps to stabilize silencing complexes. GAGA factor/Trithorax-like, a member of the trithorax group, is also bound at those PREs which contain GAGA consensus-binding sites. Two modes of binding can be distinguished: a high level binding to elements in the regulatory domain of the expressed Abdominal-B gene, and a low level of binding to Polycomb-bound PREs in the inactive domains of the bithorax complex. We propose that GAGA factor binds constitutively to regulatory elements in the bithorax complex, which function both as PREs and as trithorax group response elements. 相似文献
18.
Mutants lacking a thylakoid membrane-bound metalloprotease, FtsH, are known to cause leaf variegation in Arabidopsis. However, the effect of reduced FtsH levels on leaf variegation has scarcely been examined in other plants. In this study, we performed RNA interference (RNAi) by which FtsH expression was suppressed in tobacco. The resulting FtsH knock-down tobacco plants showed variegation in their leaves, and a negative correlation between the degree of variegation and the level of FtsH, which supported earlier observations in Arabidopsis. A decrease of NtFtsH2 as well as NtFtsH1 suggested that these are the two major isoforms comprising the FtsH complex in tobacco chloroplasts. The RNAi tobacco lines also showed photoinhibition-vulnerable phenotypes, as evidenced by high-light-sensitive PSII activity and retarded degradation of D1 protein. Interestingly, the formation of variegated sectors during leaf development appeared to differ between Arabidopsis and tobacco. In contrast to the formation of variegation in Arabidopsis, the yellow sectors in FtsH RNAi tobacco emerged from green leaves at a late stage of leaf development. A series of cytological observations implied that thylakoid membranes were dismantled after development had already occurred. Late formation of variegation in FtsH RNAi tobacco suggested that the heteromeric FtsH complex is important for maintaining thylakoid membranes. 相似文献
19.
Elina Vladimirou Michael Li Cassie P. Aldridge Markus Kirkilionis 《FEBS letters》2009,583(22):3690-3696
The thylakoid membrane forms stacked thylakoids interconnected by ‘stromal’ lamellae. Little is known about the mobility of proteins within this system. We studied a stromal lamellae protein, Hcf106, by targeting an Hcf106-GFP fusion protein to the thylakoids and photobleaching. We find that even small regions fail to recover Hcf106-GFP fluorescence over periods of up to 3 min after photobleaching. The protein is thus either immobile within the thylakoid membrane, or its diffusion is tightly restricted within distinct regions. Autofluorescence from the photosystem II light-harvesting complex in the granal stacks likewise fails to recover. Integral membrane proteins within both the stromal and granal membranes are therefore highly constrained, possibly forming ‘microdomains’ that are sharply separated. 相似文献