首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study (Vanden Bossche et al., Breast Cancer Res. Treat. 30 (1994) 43) the interaction between (+)-S-vorozole and the I-helix of cytochrome P450 19 (P450 aromatase) has been reported. In the present study we extended the “I-helix model” by incorporating the C-terminus of P450 aromatase. The crystal structures of P450 101 (P450 cam), 102 (P450 BM-3) and 108 (P450 terp) reveal that the C-terminus is structurally conserved and forms part of their respective substrate binding pocket. Furthermore, the present study is extended to the interaction between P450 aromatase and its natural substrate androstenedione and the non-steroidal inhibitors (−)-R-vorozole, (−)-S-fadrozole, R-liarozole and (−)-R-aminoglutethimide. It is found that (+)-S-vorozole, (−)-S-fadrozole and R-liarozole bind in a comparable way to P450 aromatase and interact with both the I-helix (Glu302 and Asp309) and C-terminus (Ser478 and His480). The weak activity of (−)-R-aminoglutethimide might be attributed to a lack of interaction wit the C-terminus.  相似文献   

2.
Prior in vitro investigations demonstrated that the P450 suicide substrate, 1-aminobenzotriazole (ABT), was a potent inhibitor of xenobiotic metabolism but had no effect on steroidogenic enzymes in the guinea pig adrenal cortex. Studies were done to determine if ABT administration to guinea pigs in vivo also selectively inhibited adrenal xenobiotic metabolism. At single doses of 25 or 50 mg/kg, ABT effected rapid decreases in spectrally detectable adrenal P450 concentrations. The higher dose caused approx. 75% decreases in microsomal and mitochondrial P450 levels within 2 h. The decreases in P450 were sustained for 24 h but concentrations returned to control levels within 72 h. Accompanying the ABT-induced decreases in adrenal P450 content were proportionately similar decreases in P450-mediated xenobiotic and steroid metabolism. Microsomal benzo(a)pyrene hydroxylase, benzphetamine N-demethylase, 17-hydroxylase and 21-hydroxylase activities were decreased to 20–25% of control values by the higher dose of ABT. Mitochondrial 11β-hydroxylase and cholesterol sidechain cleavage activities were similarly diminished by ABT treatment. Adrenal 3β-hydroxysteroid dehydrogenase activity, by contrast, was not affected by ABT, indicating specificity for P450-catalyzed reactions. The results demonstrate that ABT in vivo is a non-selective inhibitor of adrenal steroid- and xenobiotic-metabolizing P450 isozymes. The absence of ABT effects on steroid metabolism in vitro suggests that an extra-adrenal metabolite may mediate the in vivo inhibition of steroidogenesis.  相似文献   

3.
Corticosterone methyl oxidase Type I (CMO I) and II (CMO II) have been postulated to be the enzymes involved in the final two steps of aldosterone biosynthesis in humans. We have isolated human cDNAs for P450c11 and P450c18 as well as the corresponding genes, CYP11B1 and CYP11B2. Both protein products of these two genes as expressed in COS-7 cells exhibit steroid 11β-hydroxylase activity, but only P450c18, a product of CYP11B2, carried steroid 18-hydroxylase activity to form aldosterone. These results indicate that CYP11B2 encodes CMO, the actual catalytic function of which is retained by P450c18, a multifunctional enzyme. This conclusion is further supported by the finding that the P450c18 gene, CYP11B2, is mutated at several different loci in patients deficient in CMO I or II.  相似文献   

4.
Mouse steroid 7- and 15-hydroxylases (P450c7 and P450c15) and coumarin 7-hydroxylase (P450coh) are structurally similar. To study the structural basis of the substrate specificities of these enzymes, we constructed a series of the mutant P450s, expressed in COS-1 and yeast cells, and studied them spectroscopically as well as enzyme-kinetically. A single amino acid mutation of residue-209 is sufficient to alter the substrate specificity of the P450s from xenobiotics to steroids and subsequently, from testosterone to corticosterone. Moreover, residue-209, when it is asparagine, appears to bind directly to the 11β-hydroxyl of corticosterone. The mutations also after the spin equilibrium of P450 depending on the hydrophobicity and size of residue-209. We conclude, therefore, that residue-209 resides close to the 6th ligand of heme in the mouse 2A subfamily and is located at a critical site of the substrate-binding pocket. As a result, the identity of the residue-209 plays a key role in determining the substrate specificity.  相似文献   

5.
6.
The steroid 11ß-hydroxylase activity of the fungus Cochliobolus lunatus was increased about 100-fold by cultivation of mycelia for 4–5 h with 20-hydroxymethyl-1,4-pregnadien-3-one. Cell-free extracts revealed a maximum activity of 45 nmol 11ß-hydroxyprogesterone/h·mg protein in the 100,000 g pellet fraction. The 11ß-hydroxylation was dependent on NADPH. The formation of 11ß-hydroxyprogesterone correlated linearly with the cytochrome P450 concentration. The fungal 11ß-hydroxylase transformed both 21-methyl and 21-hydroxymethyl steroids. The enzyme showed a broader substrate specificity and lower regioselectivity as compared with the adrenal cytochrome P45011ß system. The fungal cytochrome P450 was partially purified to a specific content of 700 pmol P450/mg protein. Western blots showed that polyclonal antibodies against cytochrome P45011 from Rhizopus nigricans cross-react with a 60 kD protein of partially purified fractions. The NADPH-cytochrome c reductase was enriched up to a specific activity of 20 U/mg protein. Polyclonal antibodies against NADPH-cytochrome P450 reductases from Candida maltosa and rat liver cross-reacted with the fungal reductase. It is concluded that the 11ß-hydroxylase of Cochliobolus lunatus represents a microsomal two-component monooxygenase system which is composed of a cytochrome P450 (Mr 60 kD) and a NADPH-cytochrome P450 reductase (Mr 79 kD).  相似文献   

7.
Several cytochrome P450s have been identified in guinea pig adrenal microsomes which are distinct from the known steroidogenic P450s, c17 and c21, and are immunochemically related to cytochrome P450s found in liver. One, a 52 K protein related to P450 I (CYP1), occurs almost exclusively in males, is localized to the inner zone, and is suppressed by ACTH. Its levels correlate with microsomal capacity for xenobiotic metabolism. The others, related to P450s II and III (CYP2 and 3), are more predominant in males, but not exclusive to them, are found in both the inner and outer zones, and are not suppressed by ACTH. Their functions remain to be elucidated. The male predominance of the CYP1-related protein has recently been shown to be due to suppression of the protein in females by estrogen. To determine if estrogen is also involved in the regulation of the CYP2-related proteins, ovariectomized and sham-operated animals were treated with a long-acting estrogen, estradiol valerate, or with the vehicle alone. These P450s reached male levels in ovariectomized females treated only with the vehicle. Their enhanced levels were suppressed by treatment with estrogen. Estrogen treatment also suppressed the levels of the P450s seen in sham-operated females. Endogenous estrogen produced similar effects. In hemi-ovariectomized females the contralateral ovary hypertrophied, a state in which estrogen levels would be maintained or increased. In these females no increase occurred in the immunodetectable P450s. In normal females, estrogen levels are low in prepubertal animals, rise at the time of puberty and drop again after ovarian cycling is completed. The CYP2-related proteins were present in adrenal microsomes of prepubertal females, but were suppressed after puberty. On the other hand, post-estrous females, in whom estrogen levels would be low, acquired male levels of these proteins in their adrenal microsomes. P450c17 and P450c21, as well as 3β-hydroxysteroid dehydrogenase, were not affected by surgery or estrogen. Taken together, these experiments indicate that suppression by estrogen in females can account, in large part, for the predominance of several immunochemical homologs of liver P450s in adult male guinea pig adrenals.  相似文献   

8.
The effect of indole-3-carbinol (IC), an anticarcinogen present in cruciferous vegetables, to alter the metabolism of 4-androstenedione (AD) by female rat liver microsomes was investigated and compared to that of its main gastric conversion product, diindolylmethane (DIM) as well as other specific cytochrome P450 inducers. DIM was a more potent inducer of the hydroxylase which converts androsterone to its 6β-hydroxylated derivative 3,6β-dihydroxy-5-androstan-17-one (A) than IC after either oral or intraperitoneal administration and was also a better in vitro inhibitor. Isosafrole (ISF), which like IC and DIM, induces CYP1A2 as well as gestodene, were powerful inhibitors of the in vitro reaction. Naringenin produced only a weak inhibitory effect while 3-methylcholanthrene was inactive. SKF-525A, a prototypic hydroxylase inhibitor, or 17β-N,N-diethylcarbamoyl-4-methyl-4-aza-5-androst-1-ene-3-one which inhibits steroid 5-reductase, also decreased the formation of A from AD by liver microsomes. The infusion of human growth hormone by osmotic minipump, which feminizes hepatic steroid metabolism, increased the ability of male rat liver microsomes to convert AD to A and to respond to induction by IC. The identity of A, the main polar derivative of AD, induced by IC, DIM and ISF, was tentatively assigned by a combination of GC-MS and results from metabolic studies with intermediates in the pathway leading to its formation. It is proposed that the protective role of indole carbinols against mammary carcinoma due to decreased formation of 16-hydroxyestrone from estrone may be further enhanced by the diminished availability of AD for aromatization to estrone.  相似文献   

9.
The polycyclic aromatic hydrocarbon phenanthrene was converted mainly (>90%) to the 1,2-dihydrodiol when metabolized in vivo by the marine teleost cod. This is also found in other bony fishes, but contrary to what is known from cartilaginous fish, crustaceans and mammals, where the K-region 9,10-dihydrodiol is the main metabolite. When liver microsomal preparations from differently pretreated cod were incubated with phenanthrene in vitro, the metabolic profile was dramatically different from the in vivo pattern, as shown by gas chromatography—mass spectrometry. The microsomes from untreated, phenanthrene, phenobarbital and pregnenolone-16-carbonitrile-treated cod converted phenanthrene mainly, but to a varying extent, to the 9,10-dihydrodiol. Treatment with β-naphthoflavone (BNF), however, resulted in a large increase in the oxidation at the 1,2-position, along with a four- to seven-fold increase in specific activity. The major cytochrome P-450 isozyme purified from BNF-treated cod liver (P-450c) showed highest activity with phenanthrene (a turnover of 0.18 nmol/min per nmol P-450), but with about equal selectivity for the 1,2- and 9,10-region of the substrate in a reconstituted system with phospholipid and NADPH-cytochrome P-450 reductase. The low regioselectivity was also observed as a lack of regioselective inhibition of microsomal phenanthrene metabolism with antiserum to cod P-450c. Two of the minor isozymes, cod cytochromes P-450b and d, showed a similar turnover to P-450c, but with a stronger selectivity for the 1,2-position (55–60%). The results indicate that other control systems, in addition to the content of individual P-450-forms in the regulatory systems, in addition to the content of individual P-450-forms in the endoplasmic reticulum, are involved in the in vivo transformation of phenanthrene by cod to the 1,2-dihydrodiol metabolite.  相似文献   

10.
The effects of partition of substrates and product on the modelling of the microenvironment of an immobilized lipase were evaluated using Response Surface Methodology. The esterification of butyric acid with ethanol in n-hexane, catalyzed by Candida rugosa lipase immobilized in two biocompatible and relatively hydrophilic polyurethane foams (“Hypol FHP 2002™” and “Hypol FHP 5000™”) was used as the model system. For each set of initial conditions, the final concentration of substrates and ethyl butyrate in the microenvironment, at equilibrium, Cmicro, were estimated by mass balancing bulk and foams. The Cmicro values obtained were used to estimate the corresponding partition coefficients of ethanol (PEtOH), butyric acid (PBA) and ester (PEB), between the foams (microenvironment) and the bulk medium. Foams containing previously inactivated lipase, as well as lipase-free foams were used. For both substrates, Cmicro values were, in the majority of the experiments, higher than their macroenvironmental counterparts. The lowest Cmicro values were observed with the less hydrophilic foam (“FHP 5000”). A decrease of CmicroEtOH in both foams and CmicroBA in “FHP 5000” foams, was obtained upon lipase immobilization. PEB values were, in all cases, close to zero. This is beneficial in terms of the shift in reaction equilibrium, product recovery and alleviation of product inhibition effects.  相似文献   

11.
We have investigated the role of steroid hormones as coronary risk factors in Helsinki Heart Study population of dyslipidemic middle-aged men. We compare here the effects of gemfibrozil and placebo on the serum levels of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), their metabolite androstanediol glucuronide (3-AdiolG), androstenedione, cortisol, testosterone, and sex-hormone binding globulin (SHBG) in non-smokers. We also examined the associations between steroid and lipoprotein levels in both treatment groups. Compared with placebo gemfibrozil treatment was associated with significant elevations of the mean levels of DHEA 10.2 vs 8.0 nmol/1; P<0.005, of DHEAS 8.0 vs 5.8 μmol/1; P<0.001, of 3AdiolG 18.3 vs 8.4 nmol/1; P<0.001, of androstenedione 5.7 vs 5.1 nmol/1; P<0.02, and of cortisol 426 vs 358 nmol/1; P<0.001. The mean SHBG levels decreased from 46.4 to 41.7 nmol/1; P=0.03 with gemfibrozil treatment. No difference was found in testosterone levels 17.7 vs 18.8 nmol/1; P=0.11, or the ratio of testosterone/SHBG 0.45 vs 0.43; P=0.23. Positive correlations were found between high density lipoprotein-cholesterol and DHEAS (r=0.267; P<0.01) and DHEA (r=0.282; P<0.01) levels and negative correlations between low density lipoprotein-cholesterol and 3-AdiolG (r=−0.400; P<0.001) and cortisol (r=−0.281; P<0.01) levels in the gemfibozil group. Our results indicate that gemfibrozil treatment increases the production and turnover of adrenal androgens and cortisol, and suggest that activation of the adrenocorticol function and increased metabolism of androgens are related to the improved lipoprotein pattern during gemfibrozil treatment.  相似文献   

12.
Ca-alginate matrix was used to co-immobilize Saccharomyces bayanus and Leuconostoc oenos in one integrated biocatalytic system in order to perform simultaneously alcoholic and malo-lactic fermentation of apple juice to produce cider, in a continuous packed bed bioreactor. The continuous process permitted much faster fermentation compared with the traditional batch process. The flavor formation was also better controlled. By adjusting the flow rate of feeding substrate through the bioreactor, i.e. its residence time, it was possible to obtain either “soft” or “dry” cider. However, the profile of volatile compounds in the final product was modified comparatively to the batch process, especially for higher alcohols, isoamylacetate, and diacetyl. This modification is due to different physiology states of yeast in two processes. Nevertheless, the taste of cider was quite acceptable.  相似文献   

13.
Cytochrome P450(11β) is deeply involved in the final steps of biosynthesis of mineralocorticoids. This paper deals with following issues about this enzyme. (1) The structure and function of the enzymes of various animal species are discussed. By making alignment of amino acid sequences of the enzymes, we identified peptide domains essential for the enzyme actions such as a putative steroid binding domain and a heme binding region. Estimates of molecular similarity among the P450(11β) family enzymes suggested that the enzymes having both 11β-hydroxylation activity and aldosterone (ALDO) synthetic activity of certain animals such as frog, cattle and pig are more similar to the ALDO synthases of the other animals, such as rat, mouse and human, than the 11β-hydroxylases of these animals. (2) The molecular nature of the P450(11β) family enzymes of genetically hypertensive rats as well as adrenal regeneration hypertension (ARH) rats is examined. (i) Mutation was found in the P450(11β) gene of Dahl's salt-resistant normotensive rat. Steroidogenic activity expressed by the mutated gene accounted well for abnormal plasma levels of steroid hormones in this rat. (ii) 11β-, 18- and 19-Hydroxylation activities of adrenal mitochondria prepared from spontaneously hypertensive rat (SHR), Wistar-Kyoto rat (WKY), and stroke-prone (SP)-SHR were not significantly different from each other. Levels of mRNA of ALDO synthase in adrenal glands of 50-week-old SHR was significantly lower than those of 10-week-old SHR, WKY and SHR-SP. (iii) No significant difference in 19-hydroxylation activity was found between adrenal mitochondria prepared from ARH rat and those from control rat. The level of message of ALDO synthase was lower in adrenal glands of ARH rat.  相似文献   

14.
Dehydroepiandrosterone sulfotransferase (DHEA ST) catalyzes the sulfation of DHEA and other hydroxysteroids. DHEA ST enzymatic activity in individual human liver biopsy samples has been shown to vary over a five-fold range, and frequency distribution histograms are bimodal, with approximately 25% of subjects included in a high activity subgroup. We set out to characterize the molecular basis for variation in human liver DHEA ST activity. The first step involved performing quantitative Western analysis of cytosol preparations from 92 human liver samples that had been phenotyped with regard to level of DHEA ST enzymatic activity. There was a highly significant correlation (rs = 0.635, P < 0.0001) between levels of DHEA ST activity and immunoreactive protein. We next attempted to determine whether the expression of DHEA ST might be controlled, in part, by a genetic polymorphism. DNA was isolated from three “low” and three “high” DHEA ST activity liver samples. Exons and the 5′-flanking region of the DHEA ST gene (STD) were amplified for each of these samples with the polymerase chain reaction (PCR). When compared with “wild type” STD sequence, some of the samples contained a T → C transition at DHEA ST cDNA nucleotide 170, located within exon 2, resulting in a Met 57 → Thr change in amino acid. Other samples contained an A → T transversion at nucleotide 557 within STD exon 4 that resulted in a Glu 186 → Val change. STD exons 2 and 4 were then sequenced for DNA isolated from an additional 87 liver samples that had been phenotyped with regard to level of DHEA ST enzymatic activity. The allele frequency for the exon 2 polymorphism in these samples was 0.027, whereas that for the exon 4 polymorphism was 0.038, but neither polymorphism was systematically related to the level of enzyme activity in these samples. Transient expression in COS-1 cells of cDNA that contained the nucleotide 170 and 557 polymorphisms, either separately or together, resulted in decreased expression of both DHEA ST enzymatic activity and level of immunoreactive protein, but only when the nucleotide 557 variant was present. Identification of common genetic polymorphisms within STD will now make it possible to test the hypothesis that those polymorphisms might alter in vivo expression and/or function of this important human steroid-metabolizing enzyme.  相似文献   

15.

1. 1.|An experiment was carried out to examine the effects of various levels of infra-red (i.r.) radiation on rectal temperature (RT) and respiration rate (RR) in New Zealand While rabbits.

2. 2.|A 4 × 3 × 6 factorial design was employed in which the factors were: four intensities of i.r. radiant heating of 0.0, 1.9, 2.1 and 2.4 MJ/m2/h, three replicates and six rabbits.

3. 3.|rectal temperature differed (P < 0.05) between treatments and were highest at the “high” level of i.r. radiation (1°C higher than for controls). At the “medium” and “low” levels of i.r. heating RTs were respectively 0.3 and 0.2°C higher than in controls.

4. 4.|At different levels of radiation RR were different (P < 0.05), with the highest (422.7 ± 218.1 breaths/min) at 2.4 MJ/m2/h i.r. radiant heating. This RR was almost 2.5 times that in controls, while at the “low” and “medium” i.r. levels RR values were respectively 1.5 and 2 times those of controls.

Author Keywords: Rabbit; thermoregulation; infra-red; higher critical temperature  相似文献   


16.
The rate-limiting step in luteal biosynthesis of progesterone consists of cleavage of the side chain of cholesterol by mitochondrial cytochrome P450 side-chain cleavage enzyme (P450scc) to form pregnenolone. Luteal mRNA encoding P450scc, quantitated on selected days of the 16-day ovine estrous cycle, was similar on days 3 and 6, increased by 2-fold on day 9 (P < 0.05) and remained elevated on day 15. Levels of P450scc mRNA on day 15 of pregnancy were not different from those found on any day of the cycle (P < 0.05). To determine whether levels of mRNA encoding P450scc are hormonally regulated, ewes on day 10 of the estrous cycle were injected with hCG or prostaglandin F2 (PGF2). P450scc mRNA was not increased for up to 36 h after injection of hCG, nor decreased within 8 h after injection of PGF2 (P < 0.05). An assay for P450scc activity was developed which utilized ovine small and large luteal cells in the presence of 22R-hydroxycholesterol and ovine high density lipoprotein. Enzyme activity was quantitated by measurement of progesterone production. In small luteal cells activation of the protein kinase A (PKA) second-messenger system by treatment with LH resulted in 910% increase in progesterone production without altering activity of P450scc. Activation of the protein kinase C (PKC) second-messenger system with phorbol 12-myristate 13-acetate caused a 51% reduction in progesterone secretion from large luteal cells but did not alter activity of P450scc. These findings suggest that in mature luteal tissue steady state levels of mRNA encoding P450scc, and enzyme activity are independent of acute regulation by activation of PKA or PKC second-messenger systems.  相似文献   

17.
Genetic variation of the endangered species, Hygrophila pogonocalyx Hayata (Acanthaceae), was estimated based on RAPD fingerprints. According to the criteria of the International Union for Conservation of Nature and Nature Resources, H. pogonocalyx is on the Red List Category due to its endangered status. Entomophilous plants of H. pogonocalyx are mostly pollinated by honeybees. Gene flow between populations is constrained by the migratory capacity of the pollinators. A survey based on RAPD fingerprinting using 50 random primers revealed the distribution of genetic variation following an “isolation by distance” model. A hierarchical AMOVA analyses indicated significant differentiation between geographical regions (Φct=0.934; P=0.048), among populations (Φst=0.945; P<0.001), and among populations within region (Φsc=0.169; P<0.001). The differentiation between geographic populations may be ascribed to a long isolation since the formation of the Central Mountain Range 1 million years ago. In contrast to low levels of genetic variation in many endangered species, some genetic processes avoiding selfing may have evolved in H. pogonocalyx. Somatic mutation also possibly contributed to the variability maintenance within populations with limited size.  相似文献   

18.
The determination of sexually dimorphic hepatic steroid metabolism in rat liver has been shown to involve growth hormone. However, the mechanisms by which growth hormone controls the cytochrome P450 enzymes responsible for this dimorphic steroid metabolism is largely unknown. In this review we discuss different levels of growth hormone signal transduction, including receptor binding, signal transduction and activation of target genes by growth hormone.  相似文献   

19.
The role of brain P450 in the physiology, pharmacology and toxicology of the brain is the subject of this study. Cytochrome P450 was isolated from the brains of rats and quantitated spectrally. The contribution of the known hepatic forms of the enzyme to the forms constitutive in the brain as well as those which are induced by hormones are xenobiotics were characterized on Western blots. We have found that the level of P450 in the brain is increased during pregnancy and lactation, by partial hepatectomy and by ethanol. In each case the profile of P450s induced is different. In pregnancy and lactation the P450 content of the hypothalamic preoptic area and olfactory lobes were increased up to 10-fold and the only subfamily identified on Western blots was 4A. There was no detectable 1A, 2A, 2B, 2C, or 2E1. Ethanol increases the level of brain P450 3- to 5-fold and P450 2C, 2E1 and 4A are induced. Upon partial hepatectomy P450 1A, 2C and 4A were detected on Western blots but there was no 2E1. The inducibility of these forms of P450 in the brain suggests that there is in situ metabolism of steroids, fatty acids, prostaglandins, ethanol and other xenobiotics in the brain and raises questions about the role of brain P450 in the development of tolerance to drugs and the neurotoxicity of xenobiotics. More importantly, the action of neurotransmitters such as dopamine which utilize fatty acid metabolites as intracellular mediators, could be influenced by the levels of 2C and 4A P450s.  相似文献   

20.
The metabolism of vitamin D is regulated by three major cytochrome P450-containing h hydroxylases—the hepatic 25-hydroxylase, the renal 1-hydroxylase, and the renal and intestinal 24-hydroxylase. In the liver, the 25-hydroxylation reaction is catalyzed by microsomal and mitochondrial cytochrome P450cc25. The microsomal P450 accepts electrons from the NADPH-cytochrome P450 reductase, and the mitochondrial P450 accepts electrons from NADPH-ferredoxin reductase and ferredoxin. In the kidney, the 1- and 24-hydroxylation reactions are catalyzed by mitochondrial cytochromes P450cc1 and P450cc24, respectively. The 24-hydroxylase is also found in vitamin D target tissues such as the intestine. The rat hepatic mitochondrial P450cc25 and the rat renal mitochondrial P450cc24 have been purified, and their cDNAs have been cloned and sequenced. 1,25-Dihydroxyvitamin D, the active metabolite of vitamin D, markedly stimulates renal P450cc24 mRNA and 24-hydroxylase activity in the intact animal and in renal cell lines. This stimulation occurs via a receptor-mediated mechanism requiring new protein synthesis. Despite the availability of a clone, no studies have yet been reported of the regulation of hepatic P450cc25 at the mRNA level. The study of one of the most important enzymes in vitamin D metabolism, the renal 1-hydroxylase which produces the active metabolite, awaits the definitive cloning of the cDNA for the P450cc1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号