首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen tube growth is essential for the fertilization process in angiosperms. When pollen grains arrive on the stigma, they germinate, and the pollen tubes elongate through the styles of the pistils to deliver sperm cells into the ovules to produce the seeds. The relationship between the growth rate and style length remains unclear. In previous studies, we developed a liquid pollen germination medium for observing pollen tube growth. In this study, using this medium, we examined the pollen tube growth ability in Petunia axillaris subsp. axillaris, P. axillaris subsp. parodii, P. integrifolia, and P. occidentalis, which have different style lengths. Petunia occidentalis had the longest pollen tubes after 6 h of culture but had a relatively shorter style. Conversely, the pollination experiments revealed that P. axillaris subsp. parodii, which had the longest style, produced the longest pollen tubes in vivo. The results revealed no clear relationship between the style lengths and the growth rate of pollen tubes in vitro. Interspecific pollinations indicated that the styles affected pollen tube growth. We concluded that, in vitro, the pollen tubes grow without being affected by the styles, whereas, in vivo, the styles significantly affected pollen tube growth. Furthermore, interspecific pollination experiments implied that the pollen tube growth tended to be suppressed in the styles of self-incompatibility species. Finally, we discussed the pollen tube growth ability in relation to style lengths.  相似文献   

2.
  • Pollen‐pistil interactions are a fundamental process in the reproductive biology of angiosperms and play a particularly important role in maintaining incipient species that exist in sympatry. However, the majority of previous studies have focused on species with syncarpous gynoecia (fused carpels) and not those with apocarpous gynoecia (unfused carpels).
  • In the present study, we investigated the growth of conspecific pollen tubes compared to heterospecific pollen tubes in Sagittaria species, which have apocarpous gynoecia. We conducted controlled pollinations between S. pygmaea and S. trifolia and observed the growth of conspecific and heterospecific pollen tubes under a fluorescence microscope.
  • Heterospecific and conspecific pollen tubes arrived at locules within the ovaries near simultaneously. However, conspecific pollen tubes entered into the ovules directly, whereas heterospecific tubes passed through the carpel base and adjacent receptacle tissue, to ultimately fertilize other unfertilized ovules. This longer route taken by heterospecific pollen tubes therefore caused a delay in the time required to enter into the ovules. Furthermore, heterospecific pollen tubes displayed similar growth patterns at early and peak pollination. The growth pattern of heterospecific pollen tubes at late pollination was similar to that of conspecific pollen tubes at peak pollination.
  • Heterospecific and conspecific pollen tubes took different routes to fertilize ovules. A delayed entry of heterospecific pollen into ovules may be a novel mechanism of conspecific pollen advantage (CPA) for apocarpous species.
  相似文献   

3.

Background and Aims

Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible.

Methods

Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers.

Key Results

The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers.

Conclusions

The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.  相似文献   

4.
Intraspecific variation in pollen deposition and number of pollen tubes per style is rarely quantified, but is essential for assessing the occurrence of pollen limitation and pollen competition and their evolutionary implications. Moreover, pollen deposition, pollen tube growth, and the fate of fertilized ovules are rarely distinguished in field studies. Here we present such a study in eight natural populations of Prunella grandiflora. We quantified microgametophyte population sizes and inferred pollen limitation when the number of fertilizable ovules exceeded pollen tubes, and assessed seed set and fate after open pollination. Two and three populations had on average significantly fewer pollen grains and pollen tubes per flower, respectively, than the fixed number of fertilizable ovules per fruit, while one population experienced significant pollen competition. Style length was positively correlated with the number of pollen tubes. While pollen availability was very variable, seed abortion was significantly less frequent in denser populations, and in one population the proportion of well-developed seeds was significantly, positively correlated with the number of pollen tubes in the style. Less pollen deposition, lower numbers of pollen tubes reaching the base of the style, lower pollen quality and therefore increased abortion of fertilized ovules can all reduce seed set in natural P. grandiflora stands. Substantial intraspecific variability implies that microgametophyte competition also occurs in this species. Finally, style morphology may affect pollen receipt.  相似文献   

5.
The pollen-specific promoter of the LAT52 gene is known to direct expression of marker proteins during the last stages of pollen maturation and in very early pollen tube growth.We have examined the expression of LAT52-GUS during later stages of pollen tube growth in style and ovary of the relatively long-styled species Nicotiana alata. GUS activity was detected histochemically and found to be present in germinating pollen grains of N. alata and in tubes growing through the upper part of the style. No GUS activity was detected in 99% of the pollen tubes growing through the lower part of the style, but activity was present in tubes within the ovary. This finding indicates that the LAT52 promoter is regulated in growing pollen tubes, and is most active during the earliest and latest stages of pollen tube growth. GUS activity was also detected in some ovules, where it presumably marked the release of pollen tube cytoplasm into the ovule. The distribution of ovules with GUS activity within the ovary is not consistent with high-precision pollen tube guidance to the ovule. Received: 16 August 1999 / Revision accepted: 20 December 1999  相似文献   

6.
花粉管的生长和发育是植物有性生殖过程中重要环节。本文首先介绍了花粉管的结构及其脉冲生长方式。然后介绍了花粉粒在柱头上萌发、花粉管在花柱道中生长及其进入胚囊的一些特点,同时还介绍了雌蕊在花粉管生长发育所起的重要作用。  相似文献   

7.
Background and Aims The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. Methods The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. Key Results Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. Conclusions The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.  相似文献   

8.
The distribution of the S locus F-box (SLF) protein was examined by immunocytochemistry and Western blot techniques using an antibody against the C-terminal part of AhSLF-S2 in self-incompatible lines of Antirrhinum. Abundant gold particles were found where pollen tubes emerge in vitro. With the elongation of pollen tubes, binding sites for the antibody were found in the cytoplasm of the pollen tubes,including the peripheral part of the endoplasmic reticulum. After germination in vitro for 16 h, the product of AhSLF-S2 and possibly its allelic products could still be detectable, implying that the SLF protein has a role in the elongating process of pollen tubes. The present study provides evidence at the protein level that the SLF protein is present in pollen cytoplasm during pollen tube growth. These findings are discussed, as is their potential role in the self-incompatible response in Antirrhinum.  相似文献   

9.
Stylar soluble proteins in self-incompatible “Nijisseiki” (S2S4), self-compatible “Osa-Nijisseiki” ( S2SSM4, SM means stylar-part mutant) and its progeny were analyzed by isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE).SSM4-allele associated protein, SSM4-protein, existed in the style of “Osa-Nijisseiki” and its progeny. The SSM4-protein expressed only in the stigma of “Osa-Nijisseiki”, whereas in its original variety “Nijisseiki”, S4-protein expressed in the upper and lower parts of the style as well as in the stigma, and its expression amount decreased from the upper part to the lower part. The protein bands analyzed by IEF-PAGE were subjected to RNase activity staining. The results showed that the S4- and the SSM4-proteins have the similar molecular weights (approximately 30 kD) and RNase activity. The specific-activities measured with yeast RNA were similar, equivalent to approximately 275 U·min-1·mg-1 protein. The S SM4-protein showed almost the same inhibitory effects as the S4-protein on the pollen germination and the pollen tube growth with S4- and SSM4-alleles in vitro . From the above results, the reasons of the self-compatibility of “Osa-Nijisseiki” are considered as (1) low expression of the SSM4-gene and (2) the SSM4-gene expression only in stigma.  相似文献   

10.
The distribution of the S locus F-box (SLF) protein was examined by immunocytochemistry and Western blot techniques using an antibody against the C-terminal part of AhSLF-S2 in self-incompatible Iines of Antirrhinum. Abundant gold particles were found where pollen tubes emerge in vitro. With the elongation of pollen tubes, binding sites for the antibody were found in the cytoplasm of the pollen tubes,including the peripheral part of the endoplasmic reticulum. After germination in vitro for 16 h, the product of AhSLF-S2 and possibly its allelic products could still be detectable, implying that the SLF protein has a role in the elongating process of pollen tubes. The present study provides evidence at the protein level that the SLF protein is present in pollen cytoplasm during pollen tube growth. These findings are discussed, as is their potential role in the self-incompatible response in Antirrhinum.  相似文献   

11.
The effect of different external factors on pollen germination and pollen tube growth is well documented for several species. On the other hand the consequences of these factors on the division of the generative nucleus and the formation of callose plugs are less known. In this study we report the effect of medium pH, 2-[N-morpholino]ethanesulfonic acid (MES) buffer, sucrose concentration, partial substitution of sucrose by polyethyleneglycol (PEG) 6000, arginine (Arg), and pollen density on the following parameters: pollen germination, pollen tube length, division of the generative nucleus, and the formation of callose plugs. We also studied the different developmental processes in relation to time. The optimal pH for all parameters tested was 6.7. In particular, the division of the generative nucleus and callose plug deposition were inhibited at lower pH values. MES buffer had a toxic effect; both pollen germination and pollen tube length were lowered. MES buffer also influenced migration of the male germ unit (MGU), the second mitotic division, and the formation of callose plugs. A sucrose concentration of 10% was optimal for pollen germination, pollen tube growth rate and final pollen tube length, as well as for division of the generative nucleus and the production of callose plugs. Partial substitution of sucrose by PEG 6000 had no influence on pollen germination and pollen tube length. However, in these pollen tubes the MGU often did not migrate and no callose plugs were observed. Pollen tube growth was independent of the migration of the MGU and the deposition of callose plugs. In previous experiments Arg proved to be positive for the division of the generative nucleus in pollen tubes cultured in vitro. Here, we found that more pollen tubes had callose plugs and more callose plugs per pollen tube were produced on medium with Arg. After the MGU migrated into the pollen tube (1 h after cultivation), callose plugs were deposited (3 h). After 8 h the first sperm cells were produced. The MGU moved away from the active pollen tube tip until the second pollen mitosis occurred, thereafter the distance from the MGU to the pollen tube tip diminished. Callose plug deposition never started prior to MGU migration into the pollen tube. Pollen tubes without a MGU also lack callose plugs (±30% of the total number of pollen tubes). Furthermore, we found a correlation between the occurrence of sperm cells in pollen tubes and the synthesis of callose plugs.  相似文献   

12.
Pollen deposition and pollen tube formation are key components of angiosperm reproduction but intraspecific variation in these has rarely been quantified. Documenting and partitioning (populations, plants and flowers) natural variation in these two aspects of plant reproduction can help uncover spatial mosaics of reproductive success and underlying causes. In this study, we assess variation in pollen deposition and pollen tube formation for the endemic monoecious shrub Cnidoscolus souzae throughout its distribution range in Mexico, and determine how this variation is structured among populations, plants and flowers. We also infer the relative importance of pollen quantity and quality in determining pollination success in this species. While we found no evidence suggesting that pollen receipt limits C. souzae reproduction across 19 populations, we did find extensive variation in pollen load size and pollen tube number per flower. Total variation in pollen receipt and pollen tube number was mostly explained by intra‐individual and among‐population variance. Furthermore, pollen load size had a stronger effect on the number of pollen tubes at the base of the style than pollen germination rate, suggesting that pollen quantity may be more important than quality for pollen tube success in C. souzae. Our results suggest that both small within‐plant flower differences and broad‐scale differences in community attributes can play an important role in determining pollination success. We emphasise the need to evaluate patterns and sources of variation in pollen deposition and pollen tube formation as a first step in understanding the causes of variation in pollination success over broad spatial scales.  相似文献   

13.

Background and Aims

Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation.

Methods

Two heterozygous mutant lines of arabidopsis (sia2-1+/– and qrt1 × sia2-2+/–) were investigated. sia2-2+/– was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy.

Key Results

Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary.

Conclusions

This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.  相似文献   

14.
The movement of organelles and vesicles in pollen tubes depends on F-actin. However, the molecular mechanism through which plant myosin XI drives the movement of organelles is still controversial, and the relationship between myosin XI and vesicle movement in pollen tubes is also unclear. In this study, we found that the siliques of the myosin xi-b/e mutant were obviously shorter than those of the wild-type (WT) and that the seed set of the mutant was severely deficient. The pollen tube growth of myosin xi-b/e was significantly inhibited both in vitro and in vivo. Fluorescence recovery after photobleaching showed that the velocity of vesicle movement in the pollen tube tip of the myosin xi-b/e mutant was lower than that of the WT. It was also found that peroxisome movement was significantly inhibited in the pollen tubes of the myosin xi-b/e mutant, while the velocities of the Golgi stack and mitochondrial movement decreased relatively less in the pollen tubes of the mutant. The endoplasmic reticulum streaming in the pollen tube shanks was not significantly different between the WT and the myosin xi-b/e mutant. In addition, we found that myosin XI-B-GFP colocalized obviously with vesicles and peroxisomes in the pollen tubes of Arabidopsis. Taken together, these results indicate that myosin XI-B may bind mainly to vesicles and peroxisomes, and drive their movement in pollen tubes. These results also suggest that the mechanism by which myosin XI drives organelle movement in plant cells may be evolutionarily conserved compared with other eukaryotic cells.  相似文献   

15.
Ovarian self‐incompatibility, including pre‐ and post‐zygotic reactions, is a complex mechanism for which we still lack many details relating to its function and significance. The joint presence of ovarian self‐incompatibility with style polymorphism is a rare combination that is found in the genus Narcissus. Usually, style polymorphic species have heteromorphic (diallelic and linked to style length locus) incompatibility, which prevents fertilization between individuals of the same morph, thereby helping to maintain equal proportions of floral morphs in populations. However, when present, self‐incompatibility in Narcissus is not linked to style polymorphism and cross‐fertilization within each morph is possible. Hence, self‐incompatibility in Narcissus is of particular interest when attempting to unravel the nature of the rejection reaction and aiming to assess possible cryptic differences in the fertilization process in intra‐ and inter‐morph crosses, which might ultimately explain the wide variation of morph‐ratio in the field. We examined the breeding system of Narcissus papyraceus, a style‐dimorphic species that has biased morph ratios in most of its populations. We studied pollen‐tube growth in the pistil and ovule fate after experimentally controlled hand pollinations. The growth of pollen tubes in self‐ and intra‐ and inter‐morph crosses was similar up to the point of micropyle penetration in both morphs but, subsequently, a pre‐zygotic failure appeared to affect male and female gametophytes in selfed pistils. A high proportion of ovules from self‐pollinated flowers showed signs of collapse and self‐pollen tubes were blocked or behaved abnormally before entering the embryo sac. Self‐incompatibility was stronger in the long‐styled morph than in the short‐styled morph. We did not find any conclusive sign of differential functioning between intra‐ and inter‐morph cross‐pollinations in any morph. These results enable us to rule out the possible effects of pollen–pistil interactions in N. papyraceus as a cause of morph‐ratio biases and confirm the exceptional nature of the self‐incompatibility mechanism in this polymorphic species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 629–643.  相似文献   

16.
This paper considers the extent to which differences in pollen tube growth rates can provide prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor, Mimulus guttatus . Mimulus nasutus is partially cleistogamous, but its larger chasmogamous flowers offer appreciable opportunity for outcrossing. Mimulus nasutus was found to have smaller pollen grains and shorter styles than M. guttatus . No differences were observed in pollen grain germination on conspecific and heterospecific stigmas. However, pollen tube growth rates of M. nasutus were found to be much slower than those of M. guttatus in the styles of that species. Consequently, any M. nasutus pollen transferred to an M. guttatus stigma was found to be competitively disadvantaged in an M. gutattus style. By contrast, no difference in pollen tube growth rate was detected between the species when growing in M. nasutus styles, possibly because M. nasutus styles are unable to support fast pollen tube growth. We tested the prediction from the pollen tube studies that a 50:50 mix of M. guttatus and M. nasutus pollen would produce 50% hybrid seeds when M. nasutus was the maternal parent, and near to 0% hybrid seed when M. guttatus was the maternal parent. The results were found to support this prediction. We conclude that pollen–pistil interactions can effect strong reproductive isolation between these species, as M. guttatus pollen tubes have a competitive advantage over those of M. nasutus in an M. guttatus style, but not in an M. nasutus style.  相似文献   

17.
以香石竹四倍体材料‘紫蝴蝶’(2n=4x=60)为母本,二倍体材料‘珍珠粉’和‘NH6’(2n=2x=30)为父本,利用荧光显微镜观察其授粉后花粉管生长情况,统计其座果率、亲和指数及种子萌发率,并对杂交后代进行倍性鉴定。结果表明,在‘紫蝴蝶’柱头上,‘珍珠粉’和‘NH6’的花粉2h开始萌发,花粉管多处出现胼胝质塞,且花柱组织出现胼胝质反应,4h花粉管到达柱头中部并出现胼胝质塞,6h花粉管到达柱头基部,17h柱头基部的花粉管增多,花粉管进入子房组织且子房组织出现胼胝质反应,17~24h花粉管能与胚珠结合,但结合率低;‘紫蝴蝶’ב珍珠粉’杂交未获得植株,‘紫蝴蝶’בNH6’杂交获得3株植株,染色体倍性鉴定表明3株植株均为四倍体,这可能是‘NH6’产生2n配子的缘故。  相似文献   

18.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

19.
We evaluated the effect of stigma-anther separation (SAS) in flowers of the self-incompatible tropical tree Ipomoea wolcottiana (Convolvulaceae). We measured the deposition of self pollen on the stigma and the growth of pollen tubes. We also evaluated phenotypic selection on female fertility using univariate regressions of SAS with fruit production. SAS varied among individuals in two years, with a range of 0–6 mm. There was a negative correlation between SAS and the number of self pollen grains on the stigma; trees with SAS of 0–2 mm received averages of ca 80–130 self grains. The effect of loading the stigma with self-pollen was tested by allowing isolated flowers to self-pollinate, then cross-pollinating by hand: there was a negative correlation between the pollen load and the proportion of grains forming pollen tubes. The highest proportion of grains forming tubes was found with loads of <10 grains, while the minimum frequency of tubes occurred with loads of >50 grains. The results suggest that more self pollen deposition leads to fewer tubes from outcross pollen. There was a significant effect of SAS on fruit production in both years. The analyses suggested stabilizing selection; very small SAS is disadvantageous due to the high load of self pollen, while very large SAS probably led to damage to the style during pollinator visits. We suggest that herkogamy may be a key character for determining the success of fruit production in self-incompatible hermaphroditic species.  相似文献   

20.
Summary In order to better understand the cellular events controlling interspecific incompatibility in the genus Populus, the incompatible cross betweenP. deltoides andP. alba has been investigated both at the light and electron microscopic levels. Stained in decolourized aniline blue and observed by epifluorescence microscopy, most incompatible pollen grains are seen to germinate at the stigma surface. Numerous incompatible pollen tubes reach the base of the style where they are arrested 19 h after pollination. Ultrastructural observations on in vivo growing incompatible pollen tubes confirm these data. Very few cytoplasmic modifications are seen within living pollen tubes reaching the lower end of the style or within arrested ones, except the presence of polymorphic plastids. In this predominantly tricellular system, the male germ unit (MGU) is apparently initiated at pollen maturity as an association between the vegetative nucleus and sperm cells. It is maintained during pollen tube growth within the style and persists within arrested incompatible pollen tubes. The unique observation of an association between a dividing generative cell at metaphase and the vegetative nucleus is also reported. Arrested pollen tubes are characterized by apical deformations and accumulation of callose within their thickened cell walls. These cytological data provide additional information on the cellular events associated with interspecific incompatibility in Populus.Abbreviations DAPI 4,6-diamino-2-phenylindole - FCR fluorochromatic reaction - MGU male germ unit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号