首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and sporulation of a Bacillus subtilis mutant deficient in branched fatty acid synthesis (gene symbol bfmB) were examined. The mutant, which produces an acyl-coenzyme A:acyl carrier protein transacylase with reduced affinity for branched fatty acid primers, could grow in media containing any one of a wide range of low-molecular-weight fatty acids having branched, cyclic, saturated, or unsaturated carbon chains. The fatty acid composition of cellular lipids depended on the compound used to support growth. Cultures of the bfmB mutant grown in the presence of 3-methylcrotonate contained an unusually high fraction (73%) of straight-chain fatty acids in the cellular lipids. The mutant sporulated with any one of the precursors of branched fatty acids in the medium; isolated spores contained mainly this branched fatty acid and only 10% or less straight-chain fatty acids regardless of the straight-chain fatty acid content of vegetative cells. Exceptional were spores grown in the presence of cyclobutane-carboxylic acid, which contained 28% straight-chain fatty acids. The branched fatty acid composition of spores could be modified greatly by changing the supply of precursors in the medium.  相似文献   

2.
Fatty acid composition and thermal behavior of natural sphingomyelins   总被引:4,自引:0,他引:4  
We found significant differences in the fatty acid composition of several bovine brain, egg yolk and sheep erythrocyte sphingomyelins. These differences in fatty acid composition influence the thermal behavior of hydrated sphingomyelin as recorded by differentail scanning calorimetry. Significant differences were also found in the temperature and complexity of the order-disorder phase transitions of bovine brain sphingomyelin obtained from different sources which, in general, correlate with the relative content of the saturated fatty acids (palmitic (C16:0) and stearic acid (C18:0) acids) and the long unsaturated nervonic acid (C24:1).  相似文献   

3.
The phospholipid ester-linked fatty acids of 0-day-, 7-day-, and 30-day-starved cultures of Vibrio cholerae were compared. Statistically significant trends were noted in the fatty acid profiles as the cells starved. The amount of the cis-monoenoic fatty acids declined (e.g., 16:1 omega 7c: 0 day, 39%; 7 day, 18%; 30 day, 11%). In contrast, the saturated fatty acids, the cyclopropyl derivatives of the cis-monoenoic fatty acids, and trans-monoenoic fatty acids increased during starvation. For instance, the amounts of 16:1 omega 7t were: 0 day, 1%; 7 day, 13%; 30 day, 17%; which increased the trans/cis ratio for 16:1 omega 7 from 0.02 (0 day) to 0.70 (7 day) to 1.56 (30 day). This may be due to the reported high turnover rates of cis-monoenoic fatty acids of membrane phospholipids and the availability of enzymes for the metabolism of these isomers. During starvation-induced phospholipid loss, the cis-monoenoic fatty acids would, therefore, be preferentially utilized. The ability to either synthesize trans-monoenoic acids (which are not easily metabolized by bacteria) or modify the more volatile cis-monoenoic acids to their cyclopropyl derivatives may be a survival mechanism which helps maintain a functional (although structurally altered) membrane during starvation-induced lipid utilization. In addition, a trans/cis fatty acid ratio significantly greater than that reported for most bacterial cultures and environmental samples (less than 0.1) may be used as a starvation or stress lipid index. Such a ratio could help determine the nutritional status of ultramicrobacteria and other reported dormant cells in natural aquatic environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

5.
The phospholipid ester-linked fatty acids of 0-day-, 7-day-, and 30-day-starved cultures of Vibrio cholerae were compared. Statistically significant trends were noted in the fatty acid profiles as the cells starved. The amount of the cis-monoenoic fatty acids declined (e.g., 16:1 omega 7c: 0 day, 39%; 7 day, 18%; 30 day, 11%). In contrast, the saturated fatty acids, the cyclopropyl derivatives of the cis-monoenoic fatty acids, and trans-monoenoic fatty acids increased during starvation. For instance, the amounts of 16:1 omega 7t were: 0 day, 1%; 7 day, 13%; 30 day, 17%; which increased the trans/cis ratio for 16:1 omega 7 from 0.02 (0 day) to 0.70 (7 day) to 1.56 (30 day). This may be due to the reported high turnover rates of cis-monoenoic fatty acids of membrane phospholipids and the availability of enzymes for the metabolism of these isomers. During starvation-induced phospholipid loss, the cis-monoenoic fatty acids would, therefore, be preferentially utilized. The ability to either synthesize trans-monoenoic acids (which are not easily metabolized by bacteria) or modify the more volatile cis-monoenoic acids to their cyclopropyl derivatives may be a survival mechanism which helps maintain a functional (although structurally altered) membrane during starvation-induced lipid utilization. In addition, a trans/cis fatty acid ratio significantly greater than that reported for most bacterial cultures and environmental samples (less than 0.1) may be used as a starvation or stress lipid index. Such a ratio could help determine the nutritional status of ultramicrobacteria and other reported dormant cells in natural aquatic environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cells of Rhodomicrobium vannielii grown at 29 C in a lactate-containing medium were extracted at room temperature with organic solvents. The extractable fraction contained the bulk of the simple lipid (1.87% of cell dry weight) and complex lipids (phospholipids, 4.2%; sulfolipid, 0.01%), coenzyme Q (0.09%), and pigments (carotenoids 1.2%; bacteriochlorophyll, 1.9%). The cell residue contained the bound lipids (nonpolar fatty acid fraction, 1.86%; polar hydroxy fatty acids, 0.49%). The residue also contained poly-β-hydroxybutyric acid (0.2%), which was extracted in boiling chloroform. In both the simple and complex lipids, vaccenic acid (11-octadecenoic acid) was the largest single component (approximately 90% in each fraction). The fatty acids of the bound lipid contained 35% vaccenic acid, even- and odd-numbered saturated and unsaturated straight-chain fatty acids, cyclopropane-, branched-, and α- and β-hydroxy fatty acids. The extractable lipids contained only straight-chain saturated and unsaturated even-numbered fatty acids. Nearly 60% of hydroxy fatty acid fraction was α-hydroxydodecanoic acid (24%) and β-hydroxydodecanoic acid (34.5%). Coenzyme Q was crystallized and identified as Q9 on the basis of melting point and chromatographic properties. Q10 had been previously reported.  相似文献   

7.
A naturally occurring fatty acid-requiring Butyrivibrio sp. (strain S2), isolated from the ovine rumen, deacylates plant galactolipids, phospholipids and sulpholipids to obtain sufficient fatty acid for growth. Growth in vitro was promoted by adding to the growth medium a single straight-chain saturated fatty acid (C13 to C18) or vaccenic acid. Palmitoleic and oleic acids also supported growth but gave lengthy lag phases probably due to their toxicity. Linolenic and linoleic acids supported good growth but they were completely hydrogenated to trans-11-octadecenoic acid which was incorporated into the bacterial complex lipids. No chain elongation, chain shortening or desaturation of the added fatty acids occurred and all were substantially incorporated into bacterial lipids of the plasmalogen type, partially as a new type of hydrophobic grouping derived from two molecules of fatty acid. The absence of fatty acid unsaturation poses the question of the maintenance of membrane fluidity within this bacterium.  相似文献   

8.
The inhibitory effects of various fatty acids on three hyaluronidases (h-ST, h-SH and h-SD) and four chondroitinases (c-ABC, c-B, c-ACI and c-ACII) were examined, and their structure-activity relationships and mechanism of action were studied. The fatty acids used in this experiment showed various inhibitory activities against the enzymes. None of the fatty acids did not inhibit h-ST and h-SH. The saturated fatty acids (C10:0 to C22:0) showed very weak or no inhibition against h-SD, c-ABC, c-B, c-ACI and c-ACII but the unsaturated fatty acids (C14:1 to C24:1) with one double bond strongly inhibited the enzymes, and the inhibitory potency increased with increase in carbon chain length of the fatty acids. In contrast, the increase in number of double bonds caused a decrease in inhibitory potency against the enzymes. The position of the double bond and the stereochemistry of the cis-trans form of oleic acid (C18:1) did not influence the inhibitory potency against the enzymes. Carboxyl and hydroxyl groups in the fatty acid molecule were concerned in the inhibition of c-ACI. Among the fatty acids, eicosatrienoic acid (C20:3) generally inhibited h-SD, c-ABC, c-B and c-ACI, and nervonic acid (C24:1) was a potent inhibitor of c-ACII, and the fatty acids inhibited the enzymes in a noncompetitive manner.  相似文献   

9.
Brassica juncea plants transformed with the Arabidopsis ADS1 gene, which encodes a plant homologue of the mammalian and yeast acyl-CoA Delta9 desaturases and the cyanobateria acyl-lipid Delta9 desaturase, were found to have a statistically significant decrease in the level of saturated fatty acids in seeds. The decrease in the level of saturated fatty acids is largely attributable to decreases in palmitic acid (16:0) and stearic acid (18:0), although arachidic acid (20:0), behenic acid (22:0) and lignoceric acid (24:0) were also decreased in the transgenic seeds compared to the negative control lines. As a result, the level of oleic acid (18:1) was slightly increased in the transgenic seed lines compared to the non-transformed controls. However, a decrease in saturated fatty acid is not always accompanied by the corresponding increase in mono-unsaturated fatty acids. For example, palmitoleic acid (16:1), gondoic acid (20:1) and nervonic acid (24:1) were all found to be decreased in transgenic seeds. The levels of linoleic acid (18:2) and linolenic acid (18:3) were also notably changed in the transgenic lines compared to the controls. The present study provides preliminary experimental data suggesting that the Arabidopsis ADS1 encodes a fatty acid Delta9 desaturase and could be useful in genetic engineering for modifying the level of saturated fatty acids in oilseed crops. However, the effect of ADS1 gene expression on seed oil fatty acid composition is beyond the changes of total saturated and mono-unsaturated fatty acids, which suggests a complex mechanism is involved in the regulation of fatty acid metabolism.  相似文献   

10.
To compare the relative impact of trans-18:1 with the two main dietary saturated fatty acids it replaces, plasma lipid response was assessed in Mongolian gerbils fed diets rich in 16:0 (24%en),18:0 (10%en), or trans-18:1 (4 or 6%en). The diets were designed such that the 18:0-rich diet substituted 7%en as 18:0 for 16:0, whereas 4%en and 6%en from trans-18:1 was substituted for 16:0 in the two trans diets. The control group was fed a diet formulated according to the fatty acid balance of American Heart Association (AHA), but provided 40%en as fat. Gerbils (n = 10 per dietary group) were fed one of the five diets for 8 weeks. The control diet, with 4 times the polyunsaturated fatty acids (PUFA) content and a P:S ratio about 10 times greater than the test diets, resulted in the lowest plasma TC, LDL cholesterol (LDL-C) and VLDL cholesterol (VLDL-C). Among the test diets, plasma TC and TG were lowest with the 18:0-rich diet. TC in gerbils fed the 16:0-rich diet and 4%en-trans were 20% higher than the 18:0-rich diet, while the 6%en-trans diet was 35% higher. VLDL-C was significantly higher in the 6%en-trans diet compared to all other groups at 8 weeks. Both trans fatty acid diets elevated plasma TG approximately 2- and 3-fold, respectively, compared to the 16:0-rich and 18:0-rich diets at 8 weeks. Further, plasma TG continued to rise over time with trans fatty acids compared to 16:0 or 18:0. Thus, in the fatty acid-sensitive gerbil, impaired TG metabolism represents a major aspect of the hyperlipemia caused by trans fatty acid substitution for major saturated fatty acids.  相似文献   

11.
Haemophilus parainfluenzae was capable of synthesizing 22 fatty acids. These fatty acids were equivalent to 4% of the bacterial dry weight. These fatty acids were localized in the membrane-wall complex, which contained the respiratory pigments, the quinone, and the phospholipids. The fatty acids which could be extracted with organic solvents comprised 86% of the total fatty acids of the cell. These fatty acids were distributed as 98% in the phospholipids and 1.9% in the neutral lipids, of which 0.5% were free fatty acids. Palmitic, palmitoleic, oleic, and vaccenic acids comprised 72% of the total fatty acids and were found almost exclusively in the phospholipids. The phospholipids also contained the cyclopropane fatty acids. The neutral lipids contained significant proportions of the odd-numbered branched and straight-chain fatty acids. The principal free fatty acids were n-dodecanoic and pentadecenoic acids. The nonextractable wall complex contained 14% of the total fatty acids. These wall fatty acids were rendered soluble only after saponification. The wall fraction contained all of the beta-hydroxymyristic acid and most of the myristoleic and pentadecenoic acids. The significance of the distribution of fatty acids between nonesterified, neutral lipid, phospholipid, and nonextractible wall remains to be determined.  相似文献   

12.
By a short-term combined prophylactic-therapeutic procedure, the following compounds were found to be active against staphylococcal infections in Swiss mice: gamma-aminobutyric acid, gamma-amino-beta-hydroxybutyric acid (GABOB), delta-amino-valeric acid (DAVA), epsilon-aminocaproic acid (EACA), trans-4-aminomethylcyclohexanecarboxylic acid (trans-AMCHA), taurine, and cysteic acid. Many of these compounds had displayed limited or no activity by a previously used prophylactic procedure. Although DAVA and GABOB were the most potent of the straight-chain omega-amino acids, trans-AMCHA displayed the greatest antistaphylococcic activity of the omega-amino acids thus far investigated. Homocarnosine (gamma-aminobutyrl histidine, which also was active by the prophylactic procedure) equalled trans-AMCHA in activity. Taurine was similar in potency to DAVA, and the activity of cysteic acid approximated that of EACA.  相似文献   

13.
The antibiotic resistance and lipid composition of rhodococci grown in rich organic media with gaseous or liquid n-alkanes were studied. Hydrocarbon-grown rhodococci exhibited an increased resistance to a wide range of antibiotics (aminoglycosides, linkosamides, macrolides, beta-lactams, and aromatic compounds). The enhanced antibiotic resistance of rhodococci grown on n-alkanes correlated with an increased content of total cell lipids (up to 14-28%) and saturated straight-chain fatty acids (C16:0, C18:0, C21:0) and was accompanied by the appearance of cardiolipin and phosphatidylglycerol in cells. These lipid compounds were supposed to promote the formation of nonspecific antibiotic resistance in rhodococci by decreasing the permeability of their cell envelope to antibiotics.  相似文献   

14.
以气相色谱法测定酿酒酵母(Saccharomyces cereuisiae) F159细胞膜类脂中脂肪酸的组成。结果表明,在低温干燥条件下,酿酒酵母细胞能自身调节脂肪酸的不饱和度,出现C_(16:1)脂肪酸含量增加,C_(16:0)脂肪酸含量略有所增,而C_(18:0)脂肪酸含量却有下降,不饱和直链脂肪酸之和与饱和直链脂肪酸之和的比值增加。说明这些变化使酿酒酵母细胞膜保持流动状态而维持细胞的稳定性和活性。初步探讨了冷冻干燥对酿酒酵母细胞脂肪酸组成的影响,为进一步探索和研究微生物抗冷冻干燥生理生化机制提供了依据。  相似文献   

15.
Glucocerebrosides of whole rye (Secale cerale L. cv Puma) leaf and plasma membrane were analyzed using gas chromatography-mass spectrometry and gas chromatography following hydrolysis or as intact molecules purified by reverse-phase high performance liquid chromatography. Fatty acids of acid-hydrolyzed leaf and plasma membrane glucocerebrosides consisted of >98 weight percent saturated and monounsaturated 2-hydroxy fatty acids which contained 16 to 26 carbon atoms. The major fatty acids detected were 2-hydroxynervonic acid (24:1h), 2-hydroxylignoceric acid (24:0h), 2-hydroxyerucic acid (22:1h), and 2-hydroxybehenic acid (22:0h). Long-chain bases of alkaline-hydrolyzed glucocerebrosides consisted primarily of cis-trans isomers of the trihydroxy base 4-hydroxysphingenine (t18:1) and the dihydroxy base sphingadienine (d18:2) with lesser amounts of 4-hydroxysphinganine (t18:0) and isomers of sphingenine (d18:1). Intact, underivatized glucocerebroside molecular species of rye leaf and plasma membrane were separated into more than 30 molecular species using reverse-phase HPLC. The molecular species composition of leaf and plasma membrane were quantitatively and qualitatively similar. The major molecular species was 24:1h-t18:1 which constituted nearly 40 weight percent of leaf and plasma membrane extracts. Several other species including 22:1h-t18:1, 24:1h-t18:1 (isomer), 22:0h-t18:1, 24:1h-d18:2, and 24:0h-t18:1 each comprised 4 to 8% of the total. It is anticipated that the high performance liquid chromatography procedure developed in this study to separate intact, underivatized lipid molecular species will be useful in future studies of the physical properties and biosynthesis of plant glucocerebrosides.  相似文献   

16.
Uptake rates of a variety of 14C-labeled fatty acids and complex lipids by Paramecium tetraurelia during 48 h of log-phase growth varied. Fatty acid uptake was maximal during lag phase of growth when phagosome (food vacuole) formation was minimal. Food vacuole formation was shown to be suppressed by the presence of exogenous lipids and by starvation. The rates of uptake of lipids were significantly greater than those of small organic compounds such as amino acids, cyclitols, fatty acid precursors and metabolic intermediates. Significant amounts of radioactivity from 14C-labeled fatty acids were metabolized to 14CO2. The uptake rates of different saturated, straight-chain fatty acids of even carbon numbers were different and were not correlated with chain length, results suggesting that the primary mechanism for uptake of these compounds was neither by bulk transport nor simple diffusion and that carrier-mediated processes could possibly be involved.  相似文献   

17.
Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P. fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles.  相似文献   

18.
Skin surface lipids of the mole Scalopus aquaticus   总被引:1,自引:0,他引:1  
Skin surface lipids of the mole Scalopus aquaticus were found to consist principally of squalene (70%), wax esters (15%), and sterol esters (5%), together with small amounts of triglycerides, free fatty acids, free fatty alcohols, and free sterols. Analysis of the fatty acids occurring free and as wax esters and sterol esters showed these to consist of approximately equal amounts of saturated and monounsaturated compounds. The saturated fatty acids consisted predominantly of odd-carbon anteiso and even-carbon straight-chain compounds, with minor amounts of even-carbon iso-branched chains. The unsaturated fatty acids had double bond positions that would have been produced by delta 9-desaturation of C14, C16 and C18 straight chain saturated precursors. Both the free and the esterified fatty alcohols had chain structures corresponding with those of the fatty acids but of somewhat greater average chain length. Discovery of a major proportion of squalene in the sebum of this animal extends the number of non-human species that have this characteristic to four, all of which inhabit a damp environment, suggesting that squalene conveys some biological advantage under these conditions.  相似文献   

19.
The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-11o medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Whole-organism methoanolysates of bacterionemae contained mycolic acids in addition to other long-chain fatty acids. These mycolic acids were similar in general structure and overall size to those found in strains of Corynebacterium diphtheriae and Corynebacterium xerosis. The long-chain fatty acids of bacterionemae, mainly straight-chain saturated and unsaturated acids, were similar to those of certain coryneform bacteria including C. diphtheriae. On the basis of these lipid data, and results of earlier studies, we recommend that the genus Bacterionema be transferred from the family Actinomycetaceae to the Coryneform Group of Bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号