首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrophysiological and biochemical experiments on slices of the rat dorsal hippocampus demonstrated that dexamethasone (100 nM) augmented and prolonged the depressive effect of noradrenaline on synaptic transmission in the CA1 zone; this effect is related to weakening of the uptake of noradrenaline by neurons. The effect of dexamethasone is mediated by glucocorticoid receptors. Inhibitors of presynaptic translocase of noradrenaline, cocaine and imipramine, increased, similarly to dexamethasone, the effects of noradrenaline; an additive synergism was observed upon combined applications of dexamethasone and cocaine. The effect of dexamethasone decreased with an increase in the extracellular concentration of glucose, but increased upon application of the Na/K-ATPase inhibitor strophantin. The potentiating influence of dexamethasone on the effects of noradrenaline was weaker in slices obtained from rats with behavioral depression induced by social isolation or chronic introduction of dexamethasone. We hypothesize that glucocorticoids stabilize noradrenergic neurotransmission in the brain under the action of stressogenic influences. The role of glucocorticoid mechanisms in the development of depression is discussed.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 377–385, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

2.
3.
According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future neuroprotective strategies.  相似文献   

4.
As there is strong evidence for inflammation and oxidative stress in depression, the aim of this study was to elucidate the relationship between oxidative imbalance and cellular immune response and to ask whether these processes are linked with iron metabolism in depressed patients. Blood was collected from patients diagnosed with recurrent depressive disorder (n=15) and from healthy controls (n=19). Whole-blood reduced glutathione (GSH), erythrocyte superoxide dismutase (SOD-1), glutathione peroxidase (GPx-1), glutathione reductase, malondialdehyde (MDA), and methemoglobin (MetHb) and plasma H2O2 were assayed spectrophotometrically. The serum heme oxygenase 1 (HO-1), cytokine, neopterin, and iron statuses were measured by ELISA. DNA damage was analyzed by comet assay. Serum concentrations of ferritin and soluble transferrin receptor were assayed by ELISA. MetHb saturation was analyzed spectrophotometrically in red blood cell hemolysate. The erythron variables were measured using a hematological analyzer. We observed a significant decrease in GPx-1 and SOD-1 activities and decreased levels of HO-1 and GSH in depressed patients compared to controls. Conversely, compared with controls, we found increased concentrations of MDA and H2O2 and more DNA damage in depressed patients. Furthermore, the levels of the proinflammatory cytokine interleukin-6 and of neopterin were increased in depressed patients along with decreased hemoglobin and hematocrit. A strong association between antioxidant defense, cytokine levels, and iron homeostasis was also revealed. These findings show that depression is associated with increased oxidative stress, inflammation, and restrictions on the available iron supply for red blood cell production. Furthermore, decreased antioxidant defense correlates with an increased cellular inflammatory response, whereas both concur with erythron and iron status, the latter explained by significant canonical correlations with the set of free radical scavenging enzymes and proinflammatory enzymes. The strong links between immune function, oxidative stress, and iron homeostasis suggest the presence of a self-sustaining multipathway mechanism that may progressively worsen, i.e., throughout accumulation of oxidative damage, producing the functional and structural consequences associated with depression. Hence, identifying viable therapeutic strategies to tackle oxidative stress and accompanying physiological disturbances, including inflammation and anemia, of chronic disease provides more opportunities for the treatment and, ultimately, prevention of depression.  相似文献   

5.
6.
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (?2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (?1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (?2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.  相似文献   

7.
Electrical stimulation (ES) at the surface of the rat brain (10–200 Hz; brief trains of 10 pulses) was found to be most effective for evoking waves of spreading depression (SD) in the cortex. Repeated stimuli spaced at 10–15 min intervals did not produce convulsive activity and nor did mechanisms of SD inhibition set in under these conditions. A 5–6-fold reduction in SD threshold occurred when the intra-burst rate was increased from 10 to 200 Hz. Temporal summation of residual processes occurring with suprathreshold ES applied at the rate of 50 and 200 Hz resulted in significant broadening of the SD focus in the ES area and regular occurrence of additional SD foci on the side ipsilateral to stimulation and in the contralateral cortex. The protracted changes in cortical excitation lingering after ES by high-frequency currents brought about a decline in SD threshold and pointed to the active part played by synaptic processes in triggering this reaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 789–796, November–December, 1989.  相似文献   

8.
9.
10.
Reward prediction errors (RPEs) and risk preferences have two things in common: both can shape decision making behavior, and both are commonly associated with dopamine. RPEs drive value learning and are thought to be represented in the phasic release of striatal dopamine. Risk preferences bias choices towards or away from uncertainty; they can be manipulated with drugs that target the dopaminergic system. Based on the common neural substrate, we hypothesize that RPEs and risk preferences are linked on the level of behavior as well. Here, we develop this hypothesis theoretically and test it empirically. First, we apply a recent theory of learning in the basal ganglia to predict how RPEs influence risk preferences. We find that positive RPEs should cause increased risk-seeking, while negative RPEs should cause risk-aversion. We then test our behavioral predictions using a novel bandit task in which value and risk vary independently across options. Critically, conditions are included where options vary in risk but are matched for value. We find that our prediction was correct: participants become more risk-seeking if choices are preceded by positive RPEs, and more risk-averse if choices are preceded by negative RPEs. These findings cannot be explained by other known effects, such as nonlinear utility curves or dynamic learning rates.  相似文献   

11.
Pathogens such as influenza A viruses (IAV) have to overcome a number of barriers defined and maintained by the host, to successfully establish an infection. One of the initial barriers is collectively characterized as the innate immune system. This is a broad anti-pathogen defense program that ranges from the action of natural killer cells to the induction of an antiviral cytokine response. In this article we will focus on new developments and discoveries concerning the interaction of IAV with the cellular innate immune signaling. We discuss new mechanisms of interference of IAV with the pathogen recognition receptor RIG-I and the type I IFN antagonist NS1 in the background of already known and established concepts. Further we summarize progress related to recently identified IFN induced proteins and the role of RNA interference in the context of IAV infection.  相似文献   

12.
Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A.  相似文献   

13.
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.  相似文献   

14.
The glucocorticoid receptor plays a pivotal role in the brain's response to stress; a haplotype of functional polymorphisms in the NR3C1 gene encoding this receptor has been associated with attention‐deficit hyperactivity disorder (ADHD). The serotonin transporter (5‐HTT) gene polymorphism 5‐HTTLPR is known to influence the relation between stress exposure and ADHD severity, which may be partly because of its reported effects on glucocorticoid levels. We therefore investigated if NR3C1 moderates the relation of stress exposure with ADHD severity and brain structure, and the potential role of 5‐HTTLPR. Neuroimaging, genetic and stress exposure questionnaire data were available for 539 adolescents and young adults participating in the multicenter ADHD cohort study NeuroIMAGE (average age: 17.2 years). We estimated the effects of genetic variation in NR3C1 and 5‐HTT, stress exposure and their interactions on ADHD symptom count and gray matter volume. We found that individuals carrying the ADHD risk haplotype of NR3C1 showed significantly more positive relation between stress exposure and ADHD severity than non‐carriers. This gene–environment interaction was significantly stronger for 5‐HTTLPR L‐allele homozygotes than for S‐allele carriers. These two‐ and three‐way interactions were reflected in the gray matter volume of the cerebellum, parahippocampal gyrus, intracalcarine cortex and angular gyrus. Our findings illustrate how genetic variation in the stress response pathway may influence the effects of stress exposure on ADHD severity and brain structure. The reported interplay between NR3C1 and 5‐HTT may further explain some of the heterogeneity between studies regarding the role of these genes and hypothalamic–pituitary–adrenal axis activity in ADHD.  相似文献   

15.
Cholecystokinin sulfated octapeptide (CCK-8S) was given to rats i.p. at single doses of 10 and 100 nmol/kg, respectively. It produced a modification in GABA levels in several areas of the rat brain. After 30 min of injection, the lower dose (10 nmol/kg) increased GABA levels in striatum by 31% (P<0.05). The higher dose (100 nmol/kg) enhanced GABA levels either in hippocampus by 78% (P<0.05) or in frontal cerebral cortex by 81% (P<0.05) and decreased in olfactory bulbs by 57% (P<0.01). Thus, these results show that systemic injection of CCK-8S, produced regional specific changes on GABA levels in brain, and these effects were dose-dependent. Systemic pretreatment with the CCK(B) receptor antagonist, PD 135,158, 1 mg/kg i.p., on the endogenous levels of GABA in certain regions was also studied. The selective CCK(B) receptor antagonist, PD 135,158, did not have an effect per se on the endogenous levels of GABA but prevents the action induced by the neuropeptide. We suggest that the action of CCK may be mediated via a selective action on the CCK(B) receptor subtypes.  相似文献   

16.
Summary Following injection of 5µg of the competitive NMDA receptor antagonist AP-5 into the nucleus accumbens, but not following injection of the same dose into the dorsal striatum, a pronounced locomotor stimulation in monoamine-depleted mice was produced; the-adrenoceptor agonist clonidine (1 mg/kg) administered ip caused a marked potentiation of an intraaccumbens AP-5 (2.5µg) injection.On the other hand, 10µg of AP-5 combined with an ip injection of clonidine (1 mg/kg) caused a marked locomotor stimulation following local application into the dorsal striatum but not following application into the prefrontal cortex. Likewise, in combination with systemically administered clonidine, a substantial locomotor stimulation was observed after application of the muscarine receptor antagonist methscopolamine (62µg) into the dorsal striatum but not into the prefrontal cortex.This study suggests that NMDA receptors in the nucleus accumbens exert an inhibitory influence on locomotor activity. The dorsal striatum may also be involved in such control via NMDA and muscarinic receptors.  相似文献   

17.
18.
Climate cooling over the past one hundred thousand years has resulted in seasonal ice cover at northern and southern latitudes that has selected for hypoxia and anoxia tolerance in some species, such as freshwater turtles. At the northern reaches of their range, North American freshwater turtles spend 4 months or more buried in the mud bottom of ice covered lakes and ponds. From a comparative perspective this gives us the opportunity to understand how an extremely oxygen-sensitive organ, such as the vertebrate brain, can function without oxygen for long periods. Brain function is based on complex excitatory (on) and inhibitory (off) circuits involving the major neurotransmitters glutamate and, γ-aminobutyric acid (GABA) respectively. When a mammalian brain becomes anoxic, glutamate levels rise within minutes resulting in excitotoxic cell death which does not occur in anoxic turtle brain. The response in turtle brain has been remodelled – GABA levels rise rapidly resulting in large inhibitory GABA receptor currents and inhibition of glutamate receptor function that together depress neuronal activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号