首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:利用整体动物、离体海马脑片、原代培养的海马神经细胞作为实验对象,研究人参皂甙Rb3抗缺血低氧性脑损伤作用及相关机制。方法:①在密闭三角烧瓶中观察小白鼠低氧存活时间。②在离体海马脑片上观察顺向群锋电位(OPS)的恢复率、恢复程度及低氧损伤电位(HIP)出现率。③低压舱作为全脑低氧模型,采用NADPH-d法,观察一氧化氮合酶(NOS)阳性细胞数、平均光密度值。④采用原代培养海马神经细胞低氧模型,观察神经细胞形态、乳酸脱氢酶(LDH)漏出率及总NOS、结构型一氧化氮舍酶(cNOS)、诱导型一氧化氮合酶(iNOS)活性。结果:①小白鼠低氧存活时间人参皂甙Rb3组较正常组明显延长,并具有剂量依赖性,以10mmol/L组最为显著。②人参皂甙Rb,对海马脑片缺血时CAl区诱发场电位的影响:对照组海马脑片模拟缺血时全部出现HIP,复氧供糖1h后OPS恢复率为0%,OPS恢复程度平均为缺血前的5,42%。使用人参皂甙Rb3后,HIP出现率明显下降,复氧供糖1h后OPS恢复率、OPS恢复程度均增加,以60μmol/L作用最为显著。③人参皂甙Rb3使海马CAI区锥体细胞层NOS阳性细胞数、平均光密度值下降。④人参皂甙Rb3能使细胞外液中LDH的漏出减少、总NOS、iNOS活性下降。结论:人参皂甙Rb,对缺血低氧性脑损伤有保护作用,并具有剂量依赖性,作用机制可能与降低低氧损伤时细胞膜通透性,减少NOS表达,抑制NOS的活性,尤其是诱导型NOS活性有关。  相似文献   

2.
目的:观察缺血后处理(IPIC)对缺血/再灌注(I/R)大鼠心肌基质金属蛋白酶-2(MMP-2)和基质金属蛋白酶抑制剂-2(TIMP-2)变化的影响,探讨IPTC保护I/R心脏间质的机制。方法:24只健康雄性SD大鼠随机分为3组(n:8):假手术组(SC组)、I/R组和IPTC组。记录各组左室血流动力学变化,观察心肌胶原含量,测定血浆中肌酸激酶(CK)和乳酸脱氢酶(LDH)浓度。以Westernblot法测定心肌组织中MMP-2和TIMP-2蛋白表达水平,以实时定量PCR(RT-PCR)法检测MMP-2和TIMP-2的表达水平。结果:与sC组相比,I/R组心肌胶原含量和左室舒缩功能明显降低,血浆cK、LDH活力和心肌MMP-2蛋白表达及mRNA水平明显升高,TIMP-2蛋白及mRNA水平明显降低;而IPTC组,大鼠心肌胶原含量和左室舒缩功能明显升高,血浆cK、LDH活力和心肌MMP-2蛋白表达及mRNA水平降低,TIMP-2蛋白及mRNA水平升高。结论:IPTC对再灌注损伤心肌间质有保护作用,其机制可能与抑制心肌中MMP-2表达,促进TIMP-2表达有关。  相似文献   

3.
目的:观察骨骼肌缺血后处理(RPostC)、心肌的缺血后处理(MPostC)对缺血/再灌注心肌保护作用是否存在差异以及两者联合后作用是否叠加。方法:健康新西兰大白兔3O只,随机分为5组(n=6):缺血对照组(Con)、假手术组(sham)、心肌缺血后处理组(MPostC)和肢体缺血后处理组(RPostC)及心肌缺血后处理联合肢体缺血后处理组(MPostC+RPostC)。采用开胸结扎冠状动脉左室支45 min,再灌注120min方法制作缺血/再灌注模型,采用短暂结扎双侧髂外动脉固定部位5 min造成骨骼肌短暂缺血。以Evans蓝标记心肌缺血区范围,以TTC法检测梗死心肌范围,并分别于缺血前、后及再灌注1、2 h测定血浆磷酸肌酸激酶(CPK)活性和乳酸脱氢酶(LDH)含量。结果:和Con组相比,MPostC和RPostC组心肌梗死范围均明显降低(P<0.05);MPostC联合RPostC组心肌梗死范围与MPostC或RPostC组相比,均进一步降低(均P<0.05)。但MPostC组及RPostC组之间心肌坏死范围未见统计学差异。再灌注120 min末血浆CPK活性及LDH含量也显示相似趋势。结论:骨骼肌缺血后处理及心肌后处理对缺血/再灌注心肌均具有明显保护作用;且两者作用可以叠加;但骨骼肌和心肌后处理之间保护作用未显示统计学差异。  相似文献   

4.
Endothelin-1 protects astrocytes from hypoxic/ischemic injury.   总被引:5,自引:0,他引:5  
Under pathological conditions such as ischemia (I), subarachnoid hemorrhage, and Alzheimer's disease, astrocytes show a large increase in endothelin (ET) -like immunoreactivity. However, it is not clear whether ET is protective or destructive to these cells during brain injury. Using astrocytes from ET-1-deficient mice, we determined the effect of ET-1 on these cells under normal, hypoxic (H), and hypoxic/ischemic (H/I) conditions. Under normal culture conditions, astrocytes from wild-type and ET-1-deficient mice showed no difference in their morphology and cell proliferation rates. ET-3 and ETA receptor mRNAs were up-regulated whereas ETB receptor mRNA was down-regulated in ET-1-deficient astrocytes, suggesting that ET-1 and ET-3 may complement each other's functions and that the expressions of these endothelins and their receptors are regulated by a complex feedback mechanism. Under H and H/I conditions, ET-1 peptide and mRNA were up-regulated in wild-type astrocytes, and the astrocytes without ET-1 died faster than the wild-type astrocytes, as indicated by greater efflux of lactate dehydrogenase. The present study suggests that astrocytes without ET-1 are more vulnerable to H and H/I injuries and that the up-regulation of astrocytic ET-1 is essential for the survival of astrocytes.  相似文献   

5.
低氧预适应的脑机制   总被引:8,自引:1,他引:8  
A concept ot tissue adaptation to hypoxia( i.e. hypoxic preconditioning) was developed and its corresponding animal models were reproduced in 1966s. The methods of model reproduction in rat, rabbit, and mouse in particular and the main results are brifly introduced in this review. The tolerance to hypoxia o{ preconditioned animals is significantly increased. Regular changes in animals‘ behavior, neurophysiology, respiratory and circulatory physiology, neuromorphology in vivo and {unction of brain and spinal cord in vitro are briefly demonstrated. The protective effects in vivo and in vitro of homogenate extract taken from the brain o{ preconditioned animals, neurochemcals and molecular neurobiolcgical alterations are briefly presented. The essence and significance of tissue adaption to hypoxia/hypoxic preconditioning are discussed in the review in terms of evolution and practical implication.  相似文献   

6.
目的:探讨缺血后处理对再灌注损伤肺细胞凋亡的影响。方法:健康雄性sD大鼠24只,随机分为对照组(C组)、缺血/再灌注组(I/n组)和缺血后处理组(IPostC组)(n=8)。对比观察各组血清中丙二醛(MDA)、超氧化物歧化酶(SOD)、髓过氧化物酶(MPO)活力及含量变化,原位缺口末端标记法(TUNEL)检测肺组织细胞凋亡情况,免疫组化及RT-PCR法检测肺组织中Bax、Bcl一2蛋白和基因的表达。结果:I/R组与c组相比,MDA含量、MPO活力明显升高,SOD活力明显下降(均P〈0.01),肺组织原位细胞凋亡检测示I/R组凋亡指数(AI)(39.03±3.46)显著高于C组(2.88±0.34),Bcl-2/Bax比值在蛋白和基因水平明显降低(均P〈0.01);IPostC组与I/R组相比MDA含量显著降低(P〈0.05),MPO活力显著降低(P〈0.01),SOD活性升高(P〈0.01),AI为8.03±0.88显著低于L/R组,并能明显升高Bcl-2/Bax比值(均P〈0.01)。结论:缺血后处理通过减轻脂质过氧化反应及中性粒细胞聚集,降低Bax/Bel.2比值,使肺组织细胞凋亡减少,从而有效地减轻肺缺血/再灌注损伤。  相似文献   

7.
脑缺血/缺氧预适应引起的基因、蛋白质表达谱的变化   总被引:3,自引:0,他引:3  
肖亮  朱兴族 《生命科学》2005,17(3):222-226
缺血,缺氧预适应保护作用的分子机制目前尚未充分阐明。最近的研究在大鼠和小鼠脑缺血,缺氧预适应的模型上采用了基因芯片、双向电泳结合质谱分析技术,揭示了大鼠和小鼠脑缺血,缺氧预适应引起的基因和蛋白质表达谱的变化。这些研究发现预适应引起一些新的基因和蛋白质的表达发生改变,深入研究这些基因和蛋白质有可能发现治疗脑中风新的药物靶标。  相似文献   

8.
Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage   总被引:13,自引:0,他引:13  
Kristián T 《Cell calcium》2004,36(3-4):221-233
Cerebral hypoxia/ischemia leads to mitochondrial dysfunction due to lack of oxygen leaving the glycolytic metabolism as a main pathway for ATP production. Inhibition of mitochondrial respiration thus triggers generation of lactate and hydrogen ions (H+), and furthermore dramatically reduces ATP generation leading to disregulation of cellular ion metabolism with subsequent intracellular calcium accumulation. Upon reperfusion, when mitochondrial dysfunction is (at least partially) reversed by restoring cerebral oxygen supply, bioenergetic metabolism recovers and brain cells are able to re-institute their normal ionic homeostatic mechanisms. However, the initial restoration of normal mitochondrial function may be only transient and followed by a secondary, delayed perturbation of mitochondrial respiratory performance seen as a decrease in cellular ATP levels and known as "secondary energy failure". There have been several mechanisms considered responsible for delayed post-ischemic mitochondrial failure, the mitochondrial permeability transition (MPT) being one that is considered important. Although the amount of calcium available during early reperfusion in vivo is limited, relative to the amount needed to trigger the MPT in vitro; the additional intracellular conditions (of acidosis, high phosphate, and low adenine nucleotideae levels) prevailing during reperfusion, favor MPT pore opening in vivo. Furthermore, the cellular redistribution and/or changes in the intracellular levels of pro-apoptotic proteins can alter mitochondrial function and initiate apoptotic cell death. Thus, mitochondria seem play an important role in orchestrating cell death mechanisms following hypoxia/ischemia. However, it is still not clear which are the key mechanisms that cause mitochondrial dysfunction and lead ultimately to cell death, and which have more secondary nature to brain damage acting as aggravating factors.  相似文献   

9.
The present study aimed to investigate the role of hydrogen sulphide (H2S) in the cardioprotection induced by ischemic postconditioning and to examine the underlying mechanisms. Cardiodynamics and myocardial infarction were measured in isolated rat hearts. Postconditioning with six episodes of 10-s ischemia (IPostC) significantly improved cardiodynamic function, which was attenuated by the blockade of endogenous H2S production with d-l-propargylglycine. Moreover, IPostC significantly stimulated H2S synthesis enzyme activity during the early period of reperfusion. However, d-l-propargylglycine only attenuated the IPostC-induced activation of PKC-alpha and PKC-epsilon but not that of PKC-delta, Akt, and endothelial nitric oxide synthase (eNOS). These data suggest that endogenous H2S contributes partially to the cardioprotection of IPostC via stimulating PKC-alpha and PKC-epsilon. Postconditioning with six episodes of a 10-s infusion of NaHS (SPostC) or 2 min continuous NaHS infusion (SPostC2) stimulated activities of Akt and PKC, improved the cardiodynamic performances, and reduced myocardial infarct size. The blockade of Akt with LY-294002 (15 microM) or PKC with chelerythrine (10 microM) abolished the cardioprotection induced by H2S postconditioning. SPostC2, but not SPostC, also additionally stimulated eNOS. We conclude that endogenous H2S contributes to IPostC-induced cardioprotection. H2S postconditioning confers the protective effects against ischemia-reperfusion injury through the activation of Akt, PKC, and eNOS pathways.  相似文献   

10.
The rates of phosphatidylcholine biosynthesis in the isolated hamster hearts under ischemic and hypoxic conditions were examined. Global ischemia was produced by perfusion of the heart with a reduced flow, whereas hypoxia was produced by perfusion with a N2-saturated buffer. A 51% reduction in the biosynthesis of phosphatidylcholine was observed in the ischemic heart. The reduction was caused by a severe decrease in ATP level which resulted in a diminished conversion of choline into phosphocholine. A 22% reduction in the biosynthetic rate of phosphatidylcholine was also detected in the hypoxic heart. The reduction was caused by a diminished level of CTP which resulted in a decreased conversion of phosphocholine to CDP-choline. No compensatory mechanism was triggered during ischemia, but the CTP: phosphocholine cytidylyltransferase activity was enhanced in the hypoxic heart. Our results demonstrate the possible rate-limiting role of choline kinase and reconfirm the regulatory role of the cytidylyltransferase in the biosynthesis of phosphatidylcholine. (Mol Cell Biochem116: 53–58, 1992)  相似文献   

11.
腺苷和乙酰胆碱后适应诱导的心肌保护作用   总被引:3,自引:0,他引:3  
Zang WJ  Sun L  Yu XJ 《生理学报》2007,59(5):593-600
近年来缺血后适应的提出成为抗再灌注损伤的里程碑,其良好的临床可控性和可靠的保护效应引起人们广泛关注。缺血后适应即在心肌长时间缺血后再灌注之前,进行数次短暂的再灌注,缺血的循环处理,诱导产生心肌保护效应,其循环次数和间隔时间存在种属差异。研究证实后适应不仅限制急性期梗死面积,还可以减轻长期损伤,其是否与保护血管内皮、抑制中性粒细胞介导的氧化损伤相关还存在争议。上调再灌注损伤补救激酶(reperfusion injury salvageHnase,RISK)通路是后适应保护的重要机制之一,即激活磷脂酰肌醇一3激酶(phosphatidy linositol3-kinase,P13K)-Akt途径和,或细胞外信号调节激酶(extracellular signal-regulatedkinase,ERK)途径,抑制线粒体通透性转换孔的开放,减少细胞凋亡和坏死。但是这两条途径的地位和关系还有待于进一步研究。为了更加适用于临床,研究者将机械调控转变为药物干预,观察药物能否模拟缺血后适应发挥保护作用,即药物后适应。腺苷是研究最广泛,也是最有希望成为临床正式用药的一种药物。我们实验室首先提出了乙酰胆碱可以模拟缺血后适应,通过线粒体ATP敏感钾通道发挥心肌保护效应。本文着重阐述缺血后适应保护缺血,再灌注损伤的效应和信号转导通路,尤其是腺苷和乙酰胆碱模拟药物后适应的可能机制和临床应用。  相似文献   

12.
缺氧性肺血管收缩的细胞机制   总被引:4,自引:0,他引:4  
缺氧直接作用于肺血管平滑肌细胞而使肺血管收缩。缺氧使细胞膜Ca~(2 )通透性增加,K~ 电导降低、膜电位下降,产生Ca~(2 )依赖性动作电位,导致肺血管张力增加和肺血管收缩。缺氧还能使平滑肌细胞内能量代谢发生改变,抑制氧化磷酸化和三羧酸循环作用,降低磷酸势能,引起肺血管收缩。缺氧减少细胞内氧自由基的产生而使细胞内氧化还原状态发生改变,GSH/GSSG和NADPH/NADP~ 比值增高,导致肺血管阻力增高。  相似文献   

13.
14.
Ischemic postconditioning (IPOC) could be ineffective or even detrimental if the index ischemic duration is either too short or too long. The present study is to demonstrate that oxygen supply and metabolism defines a salvageable ischemic time window of IPOC in mice. C57BL/6 mice underwent coronary artery occlusion followed by reperfusion (I/R), with or without IPOC by three cycles of 10 s/10 s R/I. In vivo myocardial tissue oxygenation was monitored with electron paramagnetic resonance oximetry. Regional blood flow (RBF) was measured with a laser Doppler monitor. At the end of 60 min reperfusion, tissue from the risk area was collected, and mitochondrial enzyme activities were assayed. Tissue oximetry demonstrated that I/R induced a reperfusion hyperoxygenation state in the 30- and 45-min but not 15- and 60-min ischemia groups. IPOC attenuated the hyperoxygenation with 45 but not 30 min ischemia. RBF, eNOS phosphorylation, and mitochondrial enzyme activities were suppressed after I/R with different ischemic time, and IPOC afforded protection with 30 and 45 but not 60 min ischemia. Infarct size measurement indicated that IPOC reduced infarction with 30 and 45 min but not 60 min ischemia. Clearly, IPOC protected mouse heart with a defined ischemic time window between 30 and 45 min. This salvageable time window was accompanied by the improvement of RBF due to increased phosphorylated eNOS and the preservation of mitochondrial oxygen consumption due to conserved mitochondrial enzyme activities. Interestingly, this salvageable ischemic time window was mirrored by tissue hyperoxygenation status in the postischemic heart.  相似文献   

15.
心肌细胞急性缺血后,及时再灌注能够挽救缺血心肌细胞的活力、减少梗死面积、促进心肌细胞功能恢复。但是再灌注是一把“双刃剑”,它产生大量活性氧类(reactive oxygen species,ROS)和Ca2+超载,开放线粒体通透性转换孔(mitochondrial permeability transition pore,mPTP),使线粒体肿胀,外膜破裂导致心肌细胞坏死。mPTP是线粒体非特异性的转换孔,由电压依赖性阴离子通道(voltage-dependent anion channel,VDAC)、腺苷酸转位蛋白(adeninenucleotide translocator,ANT)和亲环蛋白D(cyclophilin D,CYPD)组成。mPTP关闭维持线粒体结构完整,是缺血心肌细胞功能恢复的先决条件。缺血后处理通过减少再灌注早期ROS大量释放和拮抗Ca^2+超载、释放内源性介质、激活再灌注损伤补救激酶(reperfusion injury salvage kinase,RISK)、抑制mPTP开放,从而保护心肌细胞。  相似文献   

16.

Background  

Ischemic postconditioning (IPost) has aroused much attention since 2003 when it was firstly reported. The role of microRNAs (miRNAs or miRs) in IPost has rarely been reported. The present study was undertaken to investigate whether miRNAs were involved in the protective effect of IPost against myocardial ischemia-reperfusion (IR) injury and the probable mechanisms involved.  相似文献   

17.
18.
In mammals, the major component in energy production is molecular oxygen. This has led to the development of several elaborate strategies that tightly regulate oxygen homeostasis in order to allow appropriate cell function and survival. However, a sustained drop in oxygen supply to neuronal tissue has detrimental consequences to cell functioning and survival. Disturbances in oxygen supply have been implicated in a number of CNS disorders that can be related to hypoxia or ischemia. On a cellular level, oxygen-deprived stress induces a multitude of spatially and temporally regulated responses, ranging from adapted channel activity to altered gene expression. Global analysis of expression changes over several time points and tissue regions or cells has already shed light on previous known and unknown biological processes and molecules. By combining knowledge from several different expression-profiling studies into one database, the first steps are made in unifying and categorizing the molecular response to oxygen-deprived conditions, such as stroke. In this review, some of the queries that can be extracted from the database are discussed in regard to the biological context.  相似文献   

19.
In mammals, the major component in energy production is molecular oxygen. This has led to the development of several elaborate strategies that tightly regulate oxygen homeostasis in order to allow appropriate cell function and survival. However, a sustained drop in oxygen supply to neuronal tissue has detrimental consequences to cell functioning and survival. Disturbances in oxygen supply have been implicated in a number of CNS disorders that can be related to hypoxia or ischemia. On a cellular level, oxygen-deprived stress induces a multitude of spatially and temporally regulated responses, ranging from adapted channel activity to altered gene expression. Global analysis of expression changes over several time points and tissue regions or cells has already shed light on previous known and unknown biological processes and molecules. By combining knowledge from several different expression-profiling studies into one database, the first steps are made in unifying and categorizing the molecular response to oxygen-deprived conditions, such as stroke. In this review, some of the queries that can be extracted from the database are discussed in regard to the biological context.  相似文献   

20.
Hepatic Ischemia and Reperfusion Injury (IRI) is a major cause of liver damage during liver surgery and transplantation. Ischemic preconditioning and postconditioning are strategies that can reduce IRI. In this study, different combined types of pre- and postconditioning procedures were tested in a murine warm hepatic IRI model to evaluate their protective effects. Proanthocyanidins derived from grape seed was used before ischemia process as pharmacological preconditioning to combine with technical preconditioning and postconditioning. Three pathways related to IRI, including reactive oxygen species (ROS) generation, pro-inflammatory cytokines release and hypoxia responses were examined in hepatic IRI model. Individual and combined pre- and postconditioning protocols significantly reduce liver injury by decreasing the liver ROS and cytokine levels, as well as enhancing the hypoxia tolerance response. Our data also suggested that in addition to individual preconditioning or postconditioning, the combination of these two treatments could reduce liver ischemia/reperfusion injury more effectively by increasing the activity of ROS scavengers and antioxidants. The utilization of grape seed proanthocyanidins (GSP) could improve the oxidation resistance in combined pre- and postconditioning groups. The combined protocol also further increased the liver HIF-1 alpha protein level, but had no effect on pro-inflammatory cytokines release compared to solo treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号