首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the method of high performance liquid chromatography with electrochemical detection, the age dynamics of the content of noradrenaline (NA) in the brain, adrenal gland, and the organ of Zuckerkandl in prenatal (18th and 21st days of embryogenesis) and early postnatal (3, 7, 15, and 30th days) periods of development was studied. The potential contribution of these organs to the formation of physiologically active concentration of noradrenalin in the blood was also assessed. The results suggest that, during the development of the organism, the activity of the sources of noradrenaline in the general circulation changes, which gives a reason to assume the existence of humoral interaction between NA-producing organs in the perinatal period of ontogenesis.  相似文献   

2.
The goal of the present study was to verify our hypothesis of humoral interaction between the norepinephrine secreting organs in the perinatal period of ontogenesis that is aimed at the sustaining of physiologically active concentration of norepinephrine in blood. The objects of the study were the transitory organs, such as brain, organ of Zuckerkandl, and adrenals, the permanent endocrine organ of rats that releases norepinephrine into the bloodstream. To reach this goal, we assessed the adrenal secretory activity (norepinephrine level) and activity of the Zuckerkandl’s organ under the conditions of destructed noradrenergic neurons of brain caused by (1) their selective death induced by introduction of a hybrid molecular complex, which consisted of antibodies against dopamine-β-hydroxylase (DBH) conjugated with saporin cytotoxin (anti-DBH-saporin) into the lateral brain ventricles of neonatal rats; and (2) microsurgical in utero destruction of embryo’s brain (in utero encephalectomy). It was observed that 72 h after either pharmacological or microsurgical norepinephrine synthesis deprivation in the newborn rat’s brain, the level of norepinephrine was increased in adrenals and, conversely, decreased in the Zuckerkandl’s organ. Therefore, the experiments with models of chronical inhibition of norepinephrine synthesis in prenatal and early postnatal rat’s brain revealed changes in the secretory activity of peripheral norepinephrine sources. This, apparently, favors the sustaining of physiologically active norepinephrine level in the bloodstream.  相似文献   

3.
4.
The maintaining of homeostasis in the organism in response to a variable environment is provided by the highly hierarchic neuroendocrine-immune system. The crucial component of this system is the hypothalamus providing the endocrine regulation of key peripheral organs, and the adenohypophysis. In this case, neuron-derived signaling molecules (SM) are delivered to the blood vessels in hypothalamic “neurohaemal organs” lacking the blood–brain barrier (BBB), the posterior lobe of the pituitary and the median eminence. The release of SM to the blood vessels in most other brain regions is prohibited by BBB. According to the conventional concept, the development of the neuroendocrine system in ontogenesis begins with the “maturation” of peripheral endocrine glands which first are self-governed and then operate under the adenohypophysial control. Meantime, the brain maturation is under the control of SM secreted by endocrine glands of the developing organism and coming from the placenta and maternal organism. The hypothalamus is involved in the neuroendocrine regulation only after its full maturation that is followed by the conversion of the opened-looped neuroendocrine system to the closed-looped system as in adulthood. Neurons of the developing brain begin to secrete SM shortly after their origin and long before the establishment of specific interneuronal relations providing initially autocrine and paracrine morphogenetic influence on differentiating target neurons. Taking into account that the brain lacks BBB over this ontogenetic period, we hypothesized that it operates as the multipotent endocrine gland secreting SM to the general circulation and thereby providing the endocrine regulation of peripheral organs and the brain. The term “multipotent” means that the spectrum of the brain-derived circulating SM and their occupancy at the periphery in the developing organism should greatly exceed those in adulthood. In order to test this hypothesis, gonadotropin-releasing hormone (GnRH), dopamine (DA), and serotonin (5-hydroxytryptamine, 5-HT) were chosen as the markers of the presumptive endocrine function of the brain in ontogenesis. According to our data, the concentrations of GnRH, DA, and 5-HT in the rat general circulation during the perinatal period, i.e. before the establishment of BBB, was as high as those in the portal circulation in adulthood. The concentrations of circulating GnRH and DA dropped to almost undetectable level after the development of BBB suggesting their brain origin. This suggestion has been proven by showing an essential decrease of GnRH, DA, and 5-HT concentrations in general circulation of perinatal rats after microsurgical elimination of synthesizing neurons or the inhibition of specific syntheses in the brain before the establishment of BBB. GnRH, DA, and 5-HT apparently as dozens of other brain-derived SM appear to be capable of providing the endocrine influence on their peripheral targets like the adenohypophysis, gonads, kidney, heart, blood vessels, and the brain (endocrine autoregulation). Although the ontogenetic period of the brain operation as the multipotent endocrine gland is relatively short, the brain-derived SM are thought to be capable of providing long-lasting morphogenetic effects on peripheral targets and the brain. Thus, the developing brain operates as the multipotent endocrine gland from the onset of neurogenesis to the establishment of BBB providing the endocrine regulation of the developing organism.  相似文献   

5.
Spontaneous and K+-stimulated release of noradrenaline from the hypothalamus, adrenal gland, and organ of Zuckerkandl under their flowing incubation was investigated in the perinatal period of ontogenesis of rats. The results suggest that, during the investigated period of ontogenesis, adrenal glands are the main source of noradrenaline in the blood, whereas the contributions of the organ of Zuckerkandl and the brain are not as significant and change during this period.  相似文献   

6.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of alpha-methylparatyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of alpha-methylparatyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

7.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of -methyl-para-tyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of -methyl-para-tyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

8.
The performed study was aimed at checking our hypothesis that the developing brain is a source of L-dihydroxyphenylalanine (L-DOPA), a precursor of dopamine in the total circulation system. At the initial stage, the L-DOPA concentration in peripheral blood was analyzed at the 18th and 21st embryonal days (E18 and E21), at the 3rd postnatal day (P3), and at the prepubertal period (P30). The highest L-DOPA concentration was revealed at the perinatal period, while decreased 4–12 times for the first month of life. The subsequent analysis of dynamics of the total blood L-DOPA content showed that maintenance of the constant L-DOPA concentration at the perinatal period on the background of a gradual increase of the blood serum volume is due to a rise of its secretion. At the postnatal period (P3–P30), the blood L-DOPA content increased twice in males, whereas it decreased to the same extent in females. Analysis of the L-DOPA concentration in two most important brain centers, hypothalamus and mesencephalon-rhombencephalon, showed its twofold decrease in hypothalamus during E18–E21 of development; then it slightly increased from E21 to P3 and fell 4–5 times by P30. In mesencephalon-rhombencephalon, the L-DOPA concentration was slightly reduced from E18 to E21 (only in females), while on P3 it returned to the E18 level and decreased 7–9 times by P30. The direct proof for the L-DOPA release from the developing brain into the systemic circulation follows from comparison of the blood L-DOPA concentration in shamoperated and encephalectomized rat fetuses after mechanical destruction of neurons of the two abovementioned most important dopaminergic centers. Thus, encephalectomy led to a twofold reduction of the blood L-DOPA concentration (statistically significant differences were observed only in females). Thus, the work presents evidence that the developing brain is one of L-DOPA sources in the total circulation system in rats during prenatal and early postnatal periods of ontogenesis.  相似文献   

9.
The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF kalirin to synapses and activation of Rac1 and its effector PAK. Overexpression of dominant-negative EphB receptor, catalytically inactive kalirin, or dominant-negative Rac1, or inhibition of PAK eliminates ephrin-induced spine development. This novel signal transduction pathway may be critical for the regulation of the actin cytoskeleton controlling spine morphogenesis during development and plasticity.  相似文献   

10.
Glucagon-like peptide-1 (7–36) amide as a novel neuropeptide   总被引:2,自引:0,他引:2  
Although earlier studies indicated that GLP-1 (7-36) amide was an intestinal peptide with a potent effect on glucose-dependent insulin secretion, later on it was found that several biological effects of this peptide occur in the brain, rather than in peripheral tissues. Thus, proglucagon is expressed in pancreas, intestine, and brain, but post translational processing of the precursor yields different products in these organs, glucagon-like peptide-1 (7-36) amide being one of the forms produced in the brain. Also, GLP-1 receptor cDNA from human and rat brains has been cloned and sequenced, and the deduced amino acid sequences are the same as those found in pancreatic islets. Through these receptors, GLP-1 (7-36) amide from gut or brain sources induces its effects on the release of neurotransmitters from selective brain nuclei, the inhibition of gastric secretion and motility, the regulation of food and drink intake, thermoregulation, and arterial blood pressure. Central administration (icv) of GLP-1 (7-36) amide produces a marked reduction in food and water intake, and the colocalization of the GLP-1 receptor, GLUT-2, and glucokinase mRNAs in hypothalamic neurons involved in glucose sensing suggests that these cells may be involved in the transduction of signals needed to produce a state of fullness. In addition, GLP-1 (7-36) amide inhibits gastric acid secretion and gastric emptying, but these effects are not found in vagotomized subjects, suggesting a centrally mediated effect. Similar results have been found with the action of this peptide on arterial blood pressure and heart rate in rats. Synthesis of GLP-1 (7-36) amide and its own receptors in the brain together with its abovementioned central physiological effects imply that this peptide may be considered a neuropeptide. Also, the presence of GLP-1 (7-36) amide in the synaptosome fraction and its calcium-dependent release by potassium stimulation, suggest that the peptide may act as a neurotransmitter although further electrophysiological and ultrastructural studies are needed to confirm this possibility.  相似文献   

11.
To reveal character of interaction of catecholamines (CA) and NO in regulation of development and of the functional state of vasopressinergic (VP-ergic) neurons of supraoptic (SON) and paraventricular (PVN) nuclei, the female rats were injected intraperitoneally with the inhibitor of CA synthesis α-methyl-p-tyrosine, daily, from the 13th to the 20th days of pregnancy. Rat pups born by the females administered with saline at the same period of pregnancy as well as intact pups and adult rats were used as control. Expression of neuronal NO-synthase (nNOS) in neurons of SON and PVN of rat pups at early stages of postnatal development was found to be significantly higher than the definitive level, which allows suggesting participation of NO in development of hypothalamic VP-ergic neurons. The revealed differences of periods of the maximal nNOS expression in the SON and PVN neurons have permitted suggesting development of SON to be completed earlier than that of PVN. The pups exposed to stress at the last third of embryonic development had a long-lasting effect on the state of VP-ergic neurons of the pups after birth. The nNOS expression in neurons does not change, which suggests that NO is not involved in regulation of VP-ergic neurons after exposure to stress at early stages of ontogenesis. A decrease of CA level in the brain at the last third of embryogenesis led to a long preserved decrease of the functional activity of VP-ergic neurons. The nNOS expression in VP-ergic neurons of SON and PVN rose substantially under effect of a compensatory enhancement of tyrosine hydroxylase (TH) expression in neurons of SON and of an increase of the level of CA-ergic innervation of PVN. Thus, we have shown that a decrease of CA level in the embryonic brain leads to an increase of nNOS expression of hypothalamic VP-ergic neurons of rat pups after birth and that the character of NO action on function of VP-ergic neurons does not differ from that of adult animals as soon as at early stages of ontogenesis.  相似文献   

12.
Treatment of hemicastrated adult female rats with adrenoblockers, chlorpromazine and alpha-methyl-DOPA decreased the ovarian compensatory hypertrophy (OCH) and prevented the stilbestrol suppression of the OCH. Disulfiram (dophamine-beta-hydroxylase inhibitor) potentiated the stilbestrol suppression of the OCH. Small doses of L-DOPA stimulated the OCH, and high doses of L-DOPA and dilantin failed to act on the ACH, but potentiated the estrogeninduced OCH inhibition. It is suggested that the FSH secretion was mediated by the release of norepinephrine in the central adrenergic neurons and that the estrogen action inhibiting the FSH secretion was mediated through the stimulation of dophamine release.  相似文献   

13.
G Engberg  T H Svensson 《Life sciences》1979,24(24):2245-2253
The amphetamine-induced inhibition of brain noradrenaline (NA) containing neurons in the rat locus coeruleus (LC) was pharmacologically analyzed utilizing single unit recording techniques. The presynaptic α-receptor blocking agent yohimbine (10 mg/kg i.p., 30 min before) largely prevented the amphetamine-induced depression of LC units in contrast to prazosin (0.6 mg/kg i.p., 30 min) or phenoxybenzamine (20 mg/kg, 30 min) which both slow preference for postsynaptic α-receptors. The β-receptor blocking agent, propranolol (10 mg/kg, 30 min), as well as the peripherally but not centrally active α-receptor blocking drug phentolamine (10 mg/kg, i.p., 30 min), also did not block the amphetamine effect. The LC inhibition by amphetamine was blocked by pretreatment with reserpine (10 mg/kg, i.p., 5 h), which caused almost total depletion of brain catecholamines. However, unlike the amphetamine-induced inhibition of central dopamine (DA) neurons the NA cell inhibition was not blocked by pretreatment with a tyrosine hydroxylase inhibitor (α-MT, 50 or 250 mg/kg i.p., 30 min). These results suggest that the amphetamine-induced inhibition of NA neurons in the LC is an indirect effect, mediated via activation of central α-receptors of presynaptic character. The lack of antagonism by α-MT indicate that the NA release by amphetamine, unlike its effect on brain DA, is not critically dependent on the rate of tyrosine hydroxylation. Thus the euphoriant action of amphetamine, which is blocked by α-MT, may be associated with release of DA rather than NA in brain.  相似文献   

14.
A classical distinction between endocrine cells and neurons cannot be accepted without exception. This dichotomy was first challenged by the concept of neurosecretion. Recent observations indicate that hormone synthesis takes place in many extraendocrine tissues since the gene expression for prohormone synthesis seems to be common for all eukaryotes although the secretion of biological active hormone products is limited by posttranslational processing for differentiated cells. Increasing number of data support the view that regulation of pituitary hormone secretion is under multifactorial control in addition to specific signaling molecular effects of hormone-releasing hormones. Such modulators are co-secreted messengers from hypothalamic sources or co-functioning at the pituitary cell level. Multichannel regulation of pituitary tropic hormones appears to be important for understanding the interactions of pharmacological agents with pituitary hormone release, on the one hand, and the modulation of hormone release in pathological conditions, on the other hand. Perinatal transient hazards may induce permanent alterations in adaptive behavior when tested in adult age. Corticosteroid-induced deviation of avoidance behavioral reactions may be opposed by simultaneous administration of ACTH-like peptides. These observations revealed that a balance of the glucocorticoids and ACTH-like peptides in perinatal period basically determine the adaptative reaction of animals in adult age. Immune system may be called as a mobile brain since its tremendous information capacity and its responsiveness to alterations of chemical environmental signals. Recent data support the view that there is a bidirectional communication between the neuro-endocrine adaptational axis and the immune system. Stress hormones can alter the immune response and mononuclear cells produce factors that change the neuroendocrine regulation. In addition to these, prohormones are synthesized in mononuclear cells that may be involved in regulation of signalization between cells and in activation of endocrine system and brain functions.  相似文献   

15.
The effects of hypoxia (10% O2, 90% N2) on the content, biosynthesis, and turnover of noradrenaline (NA) and 3,4-dihydroxyphenylethylamine (dopamine, DA) in the rat brain were examined. Up to 24 h following exposure to hypoxia, NA content in the whole brain was decreased, whereas DA content remained unchanged. The accumulation of 3,4-dihydroxyphenylalanine (DOPA) after central decarboxylase inhibition was decreased. The turnover rate of DA after synthesis inhibition was markedly decreased up to 8 h and returned to the control level within 24 h. In contrast, the turnover rate of NA was all but unchanged, except for a 4-h exposure. The 2-h exposure to the hypoxic environment resulted in a significant decrease in NA content and DOPA accumulation in all brain regions tested, but no significant change was observed in DA content. The turnover rate of DA was remarkably decreased in all brain regions tested, whereas the rate of NA was slightly decreased only in the cerebral cortex and hippocampus. These results suggest that although hypoxia decreases the biosynthesis of both NA and DA, the effects of oxygen depletion on the functional activities of NA neurons differ considerably from those of DA neurons: Only in the cerebral cortex and hippocampus are the NA neurons slightly sensitive to hypoxia, whereas the DA neurons are most sensitive in all brain regions.  相似文献   

16.
17.
Male Wistar rats at 2 and 12 months of age were sacrificed before, immediately following, and at 6 and 24 hours after a 3-hour immobilization stress period. Levels of noradrenaline (NA) and its major metabolite, 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4), in eight brain regions and plasma corticosterone levels were fluorometrically determined. Immobilization stress caused significant increases of MHPG-SO4 levels in all brain regions examined and significant elevations in plasma corticosterone levels in both 2 and 12 month old rats. In 2 month old rats, the MHPG-SO4 levels in all brain regions returned to control levels within 6 hours after release from the stress. However, in 12 month old rats, the metabolite levels in the hypothalamus, amygdala, pons plus medulla oblongata (pons+med. obl .) and midbrain still remained at significantly increased levels at 6 and 24 hours after the stress. Moreover, in the amygdala of older rats, stress-induced decreases in NA levels persisted even 6 hours after stress. Plasma corticosterone levels also showed significant elevations at 6 and 24 hours after the stress only in 12 month old rats. These results suggest that brain NA metabolism during recovery periods from an acute exposure to a stressful situation is altered by the aging process in such a manner that NA neurons in the hypothalamus, amygdala, pons+med. obl . and midbrain in older rats remain activated by stressful stimuli for prolonged periods of time following release from stress.  相似文献   

18.
The possibility that chronic hyperprolactinaemia results in loss of the ability of hypothalamic dopamine activity to inhibit prolactin secretion was studied in rats. Two degrees of hyperprolactinaemia (moderate and gross) were induced in the animals following the chronic administration of two different doses of oestradiol valerate. In rats with high chronic serum prolactin concentrations (approximately 20 times normal) there was a profound increase in prolactin secretion following inhibition of brain dopamine (DA) synthesis by 3-iodo-L-tyrosine, indicating intact and highly active hypothalamic DA-inhibitory control of prolactin release. However, the degree of hypothalamic inhibition of prolactin release relative to normal controls was significantly reduced. In animals with grossly elevated chronic serum prolactin concentrations (approximately 100 times normal) a prolactin response to DA synthesis inhibition was absent despite a highly significant reduction in hypothalamic DA concentrations induced by 3-iodo-L-tyrosine. These observations show that chronic and gross hyperprolactinaemia in the rat results in loss of hypothalamic DA inhibitory control of prolactin secretion. The use of 3-iodo-L-tyrosine to block brain DA synthesis in these studies has provided significant new data relating to prolactin control in hyperprolactinaemic states and indicates that this compound could be a useful clinical tool in the study of human hyperprolactinaemia.  相似文献   

19.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

20.
Abstract: We have shown previously that noradrenaline (NA) stimulated or inhibited the release of corticotropin-releasing hormone (CRH) according to the availability of adrenal steroids. The aim of the present work was to examine whether the changes in the NA modulation of CRH release from hypothalamic neurons result from a steroid-induced plasticity of the adrenergic transduction pathways. From anterior hypothalamic slices cultured in standard medium (i.e., containing adrenal steroids at a final dilution of 61 ± 9 ng/ml), (a) the stimulatory effect of NA on CRH release was reversed in a dose-dependent manner by increasing concentrations of the α1-adrenoreceptor antagonist prazosin, (b) activation of protein kinase C by acute treatment with phorbol 12-myristate 13-acetate (0.5 µ M , 1 h) mimicked NA stimulation of CRH secretion, and (c) the activation of L-type Ca2+ channels by Bay K 8644 also produce an increased CRH secretion. In contrast, the inhibitory effect of NA on CRH secretion from slices cultured in steroid-free medium was markedly reversed by the α2-adrenoreceptor antagonist yohimbine, by pretreatment with pertussin toxin, or by the addition of 4-aminopyridine, a K+-channel blocker. Acute treatment with phorbol 12-myristate 13-acetate did not change the inhibitory NA effect. Moreover, all these effects were reversed by daily corticosterone supplementation, for as long as they were tested. These results are consistent with a steroid-dependent change in the nature of adrenergic receptors and its associated transduction pathways involved in the regulation of CRH secretion in the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号