首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications.  相似文献   

2.
Advanced glycation end-products (AGEs) are heterogeneous group of compounds, known to be implicated in diabetic complications. One of the consequences of the Maillard reaction is attributed to the production of reactive intermediate products such as α-oxoaldehydes. 3-deoxyglucosone (3-DG), an α-oxoaldehyde has been found to be involved in accelerating vascular damage during diabetes. In the present study, calf thymus histone H3 was treated with 3-deoxyglucosone to investigate the generation of AGEs (Nε-carboxymethyllysine, pentosidine), by examining the degree of side chain modifications and formation of different intermediates and employing various physicochemical techniques. The results clearly indicate the formation of AGEs and structural changes upon glycation of H3 by 3-deoxyglucosone, which may hamper the normal functioning of H3 histone, that may compromise the veracity of chromatin structures and function in secondary complications of diabetes.  相似文献   

3.
3-Deoxyglucosone (3-DG) is synthesized via the Maillard reaction and the polyol pathway, and is detoxified to 3-deoxyfructose and 2-keto-3-deoxygluconic acid. 3-DG rapidly reacts with protein amino groups to form advanced glycation end products (AGEs) such as imidazolone, pyrraline, Nε-(carboxymethyl)1ysine and pentosidine, among which imidazolone is the AGE most specific for 3-DG. As demonstrated by using gas chromatography–mass spectrometry or high-performance liquid chromatography, plasma 3-DG levels are markedly increased in diabetes and uremia. Although the plasma 3-DG levels had been controversial, it was clearly demonstrated that its plasma level depends on the deproteinization method by which either free or total 3-DG, presumably bound to proteins, is measured. In diabetes, hyperglycemia enhances the synthesis of 3-DG via the Maillard reaction and the polyol pathway, and thereby leads to its high plasma and erythrocyte levels. In uremia, however, the decreased catabolism of 3-DG, which may be due to the loss of 3-DG reductase activity in the end-stage kidneys, may lead to high plasma 3-DG level. The elevated 3-DG levels in plasma and erythrocytes may promote the formation of AGEs such as imidazolone, as demonstrated by immunohistochemistry and immunochemistry using an anti-imidazolone antibody. Although AGE-modified proteins prepared in vitro exhibit a variety of biological activities, known AGE structures have not yet been demonstrated to show any biological activities. Because 3-DG is potent in the formation of AGEs and has some biological activities, such as cellular toxicity, it may be more important in the development of diabetic and uremic complications than the known AGE structures. By demonstrating that treatment with an aldose reductase inhibitor reduces the erythrocyte levels of 3-DG and AGEs, such as imidazolone, light is shed on the mystery of how aldose reductase inhibitors may prove beneficial in diabetic complications. These evidences suggest that 3-DG plays a principal role in the development of diabetic and uremic complications.  相似文献   

4.
The levels of plasma 3-deoxyglucosone (3-DG) increase under hyperglycemic conditions and are associated with the pathogenesis of diabetic complications because of the high reactivity of 3-DG with proteins to form advanced glycation end products (AGE). To investigate potential markers for 3-DG-mediated protein modification in vitro and in vivo, we compared the yield of several 3-DG-derived AGE structures by immunochemical analysis and HPLC and measured their localization in human atherosclerotic lesions. When BSA was incubated with 3-DG at 37 degrees C for up to 4 wk, the amounts of N(epsilon)-(carboxymethyl)lysine (CML) and 3-DG-imidazolone steeply increased with incubation time, whereas the levels of pyrraline and pentosidine increased slightly by day 28. In contrast, significant amounts of pyrraline and pentosidine were also observed when BSA was incubated with 3-DG at 60 degrees C to enhance AGE-formation. In atherosclerotic lesions, CML and 3-DG-imidazolone were found intracellularly in the cytoplasm of most foam cells and extracellularly in the atheromatous core. A weak-positive immunoreaction with pyrraline was found in the extracellular matrix and a few foam cells in aortic intima with atherosclerotic lesions. Our results provide the first evidence that CML and 3-DG-imidazolone are major AGE structures in 3-DG-modified proteins, and that 3-DG-imidazolone provides a better marker for protein modification by 3-DG than pyrraline.  相似文献   

5.
Proteins modifications in diabetes may lead to early glycation products (EGPs) as well as advanced glycation end products (AGEs). Whereas no extensive studies have been carried out to assess the role of EGPs in secondary complications of diabetes, numerous investigators have demonstrated the role of AGEs. Early glycation involves attachment of glucose on ε-NH2 of lysine residues of proteins leading to generation of the Amadori product (an early glycation species). This study reports the structural and immunological characterization of EGPs of HSA because we believe that during persistent hyperglycemia the HSA, one of the major blood proteins, can undergo fast glycation. Glucose mediated generation of EGPs of HSA was quantitated as Amadori products by NBT assay and authenticated by boronate affinity chromatography and LC/MS. Compared to native HSA changes in glycated-HSA were characterized by hyperchromicity, loss in fluorescence intensity and a new peak in the FTIR profile. Immunogenicity of native- and glycated-HSA was evaluated by inducing antibodies in rabbits. Results suggest generation of neo-epitopes on glycated-HSA rendering it highly immunogenic compared to native HSA. Quantization of EGPs of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes.  相似文献   

6.
BACKGROUND: The advanced stage of the Maillard reaction that leads to the formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it has been proposed that the intermediates contributing to AGE formation include dicarbonyl intermediates such as glyoxal, methylglyoxal, and 3-deoxyglucosone (3-DG). In the present study, we developed a novel, non-carboxymethyllysine (CML) anti-AGE antibody that recognizes serum proteins and peptides modified by 3-DG in vivo. MATERIALS AND METHODS: AGE-modified serum albumins were prepared by incubation of rabbit serum albumin with 3-DG or D-glucose. After immunization of rabbits, anti-AGE antisera were subjected to affinity chromatography on a Sepharose 4B column coupled with CML-BSA, or AGE-BSA created by incubation with 3-DG (AGE-6) or D-glucose (AGE-1). The AGE-Ab-6 and AGE-Ab-1 thus obtained was used to investigate AGEs in serum from diabetic patients on hemodialysis. RESULTS: Characterization of the novel AGE-Ab-6 obtained by immunoaffinity chromatography was performed with a competitive ELISA and immunoblot analysis. This antibody specifically cross-reacted with proteins modified by 3-DG. AGE-6 was detected in diabetic serum as three peaks with apparent molecular weights of 200, 1.15, and 0.85 kD, while AGE-1 was detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. CONCLUSION: This study provides new data on the pathways of AGE formation from 3-DG and methods for the immunochemical detection of AGEs. We also provide immunochemical evidence for the existence of six distinct AGEs in vivo among the AGE-modified proteins and peptides in the serum of diabetic patients on hemodialysis.  相似文献   

7.
Glycation is a nonenzymatic condensation reaction between reducing sugars and amino groups of proteins that undergo rearrangements to stable ketoamines, leading to the formation of advanced glycation end products (AGEs) including fluorescent (argpyrimidine) and nonfluorescent (Nε-carboxymethyllysine; CML) protein adducts and protein cross-links. AGEs are formed via protein glycation and correlate with processes resulting in aging and diabetes complications. Reactive carbonyl species such as glyoxal and methylglyoxal are ubiquitous by-products of cell metabolism that potently induce the formation of AGEs by nonenzymatic protein glycation and may achieve plasma concentrations of 0.3–1.5 μmol/L. In this in vitro study histone H1 glycation by glyoxal, methylglyoxal, or ADP-ribose was used to model nonoxidative protein glycation, permitting us to distinguish specific AGE inhibition from general antioxidant action. Rutin derivatives were tested as AGE inhibitors because rutin, a common dietary flavonoid that is consumed in fruits, vegetables, and plant-derived beverages, is metabolized by gut microflora to a range of phenolic compounds that are devoid of significant antioxidant activity and achieve blood concentrations in the μmol/L range. Our data show that in a 1:1 stoichiometry with glyoxal or methylglyoxal, 3,4-dihydroxyphenylacetic acid (DHPAA) and 3,4-dihydroxytoluene (DHT) are powerful inhibitors of CML and argpyrimidine histone H1 adduct formation, respectively. Furthermore, when DHPAA and DHT were tested as inhibitors of histone H1 glycation by the powerful glycating agent ADP-ribose, they inhibited glycation as effectively as aminoguanidine. These results suggest that dietary flavonoids may serve as effective AGE inhibitors and suggest mechanisms whereby fruit- and vegetable-rich diets contribute to the prevention of processes resulting in aging and diabetes complications.  相似文献   

8.
Advanced glycation end-products (AGEs), which accumulate in the blood and tissues of patients with chronic renal failure (CRF) undergoing chronic hemodialysis, play an important role in the pathogenesis of uremic complications. Endothelin 1 (ET1), a 21-amino acid peptide with vasoconstricting and mitogenic properties, is an important factor in the endothelial dysfunction occurring in uremia. The circulating levels of both AGEs and ET1 have been reported to be increased in chronic renal failure. In the present study we evaluated the possible relationship between pentosidine and ET1 plasma levels in CRF patients undergoing chronic hemodialysis treatment. The plasma concentrations of "free" and bound pentosidine (HPLC methods) and endothelin-1 (RIA method) were measured before the hemodialysis session in 40 nondiabetic CRF patients (22 males and 18 females; 54+/-3 years) on chronic hemodialysis for at least 1 year. Forty age- and sex-matched normal subjects served as a control group. In hemodialyzed patients, the overall pentosidine residues and pentosidine-free adduct plus pentosidine-free adduct bound reversibly to protein levels (24.9+/-2.04 pmol/mg protein and 110.5+/-5.9 pmol/ml, respectively) were significantly higher than those recorded in normal subjects (2.0+/-0.2 pmol/mg protein and 0.7+/-0.2 pmol/ml, respectively ). Endothelin-1 was also significantly (p<0.01) increased in CRF patients (10.6+/-0.4 pmol/ml in CRF patients and 2.7+/-0.3 pmol/ml in normal subjects). A significant positive correlation (p<0.01) was seen between "total" pentosidine (pentosidine residues and pentosidine-free adduct plus pentosidine-free adduct bound reversibly to protein) levels and endothelin-1 plasma values. The correlation between pentosidine and endothelin-1 provides further evidence that some AGEs exert a detrimental effect on the vascular endothelium, thereby contributing to the hypertension and other cardiovascular damage seen in CRF patients.  相似文献   

9.
Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N(ε)-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when (125)I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of (125)I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.  相似文献   

10.
In diabetes, protein glycation mostly occurs at intrachain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). Several studies have reported autoantibodies against AGEs in diabetes but not much data are found in respect of Amadori products. In this study, poly-l-lysine (PLL) was glycated with 50 mM glucose and the resultant Amadori products were estimated by fructosamine or nitroblue tetrazolium assay. We report high content of Amadori products in PLL upon glycation. Glycated PLL showed marked hyperchromicity in the UV spectrum, ellipticity changes in CD spectroscopy, and variations in ε-methylene protons shift in NMR. It was better recognized by autoantibodies in type 2 diabetics compared to the native PLL. Induced antibodies against glycated PLL were successfully used to probe early glycation in the IgG isolated from diabetes type 2 patients. Role of Amadori products of glycated proteins in the induction of autoantibodies in type 2 diabetes as well as in associated secondary complications has been discussed.  相似文献   

11.
Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against Nε-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when 125I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of 125I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.  相似文献   

12.
Advanced glycation end-products (AGEs) are formed over several weeks to months by non-enzymatic glycation and oxidation (“glycoxidation”) reactions between carbohydrate-derived carbonyl groups and protein amino groups, known as the Maillard reaction. Pentosidine is one of the best-characterized AGEs and is accepted as a satisfactory marker for glycoxidation in vivo. The present study was intended to measure pentosidine concentrations in umbilical cord blood from newborns with various gestational ages using our recently established high-performance liquid chromatography method [Tsukahara, H. et al. (2003) Pediatr. Res. 54, 419-424]. Our study demonstrates, for the first time, that pentosidine is detected in most of the umbilical blood samples. This study also shows that the umbilical blood concentrations of pentosidine are considerably lower than normal adult values, but that they increase with gestation progression and fetal growth. Umbilical pentosidine concentrations were significantly elevated in newborns of mothers with preeclampsia compared to those of mothers without preeclampsia. We conclude that accumulation of AGEs and oxidative stress occurs in fetal tissues and organs in utero at the early stage of human life and that their accumulation is augmented in the maternal preeclampsic condition.  相似文献   

13.
Advanced glycation end-products (AGEs) result from oxidation–reduction reactions that ensue when a sugar becomes adducted to a protein. AGEs cause various complications of diabetes mellitus (DM). Experimental and clinical evidence suggest that AGEs also contribute to the complications of hypertension (HTN). Little is known about the abundance and localization of AGEs in human myocardium. In a few light microscopic studies, the AGE carboxymethyl lysine (CML) has been immunolabeled and localized virtually exclusively to the walls of small arteries. To more precisely delineate the abundance and localization of CML, we developed an immunoelectron microscopic (IEM) detection method using anti-CML monoclonal antibody 6D12 in conjunction with computer-assisted image analysis. Antibody was pre-absorbed with purified AGE-bovine serum albumin to assure specificity. Antigen–antibody (ag–ab) complexes were individually identified with protein A-conjugated colloidal gold and counted with an automated system. We applied this method in 21 patients (pts) undergoing epicardial biopsy during coronary bypass grafting (CBG) [20 M, 1 F; mean age 65 ± 7.4 (± SEM) years]. Seven pts had neither DM nor HTN, seven had HTN, and seven had DM + HTN. In contrast to the prior light microscopic studies, we detected CML scattered throughout the cardiomyocyte in all pts, but in widely varying amounts. Ag–ab complexes were abundant in sections through myofilaments (mean count 23.6 ± 9.2 per μm2, range 9.4–48) and even more so in mitochondria (mean count 34.4 ± 11.9 per μm2, range 14.1–68.2, P < 0.001 vs. myofilaments). CML was also detected in vascular endothelial cells. There were no statistically significant differences based on presence or absence of HTN or DM. In conclusion, our IEM method is the first to provide detailed delineation of the localization and abundance of CML in myocardium. CML is very prevalent in CBG pts, suggesting that AGEs could play a role in abnormal cardiomyocyte function, including altered energy metabolism.  相似文献   

14.
The highly reactive electrophile, methylglyoxal (MG), a break down product of carbohydrates, is a major environmental mutagen having potential genotoxic effects. Previous studies have suggested the reaction of MG with free amino groups of proteins forming advanced glycation end products (AGEs). This results in the generation of free radicals which play an important role in pathophysiology of aging and diabetic complications. MG also reacts with free amino group of nucleic acids resulting in the formation of DNA-AGEs. While the formation of nucleoside AGEs has been demonstrated previously, no extensive studies have been performed to assess the genotoxicity and immunogenicity of DNA-AGEs. In this study we report both the genotoxicity and immunogenicity of AGEs formed by MG-Lys-Cu(2+) system. Genotoxicity of the experimentally generated AGEs was confirmed by comet-assay. Spectroscopical analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. This might be due to generation of single-stranded regions and destabilization of hydrogen bonds. Immunogenicity of native and MG-Lys-Cu(2+)-DNA was probed in female rabbits. The modified DNA was highly immunogenic eliciting high titre immunogen specific antibodies, while the unmodified form was almost non-immunogenic. The results show structural perturbations in MG-Lys-Cu(2+)-DNA generating new epitopes that render the molecule immunogenic.  相似文献   

15.
Age-related macular degeneration (AMD) causes severe vision loss in the elderly; early identification of AMD risk could help slow or prevent disease progression. Toward the discovery of AMD biomarkers, we quantified plasma protein Nε-carboxymethyllysine (CML) and pentosidine from 58 AMD and 32 control donors. CML and pentosidine are advanced glycation end products that are abundant in Bruch membrane, the extracellular matrix separating the retinal pigment epithelium from the blood-bearing choriocapillaris. We measured CML and pentosidine by LC-MS/MS and LC-fluorometry, respectively, and found higher mean levels of CML (∼54%) and pentosidine (∼64%) in AMD (p < 0.0001) relative to normal controls. Plasma protein fructosyl-lysine, a marker of early glycation, was found by amino acid analysis to be in equal amounts in control and non-diabetic AMD donors, supporting an association between AMD and increased levels of CML and pentosidine independent of other diseases like diabetes. Carboxyethylpyrrole (CEP), an oxidative modification from docosahexaenoate-containing lipids and also abundant in AMD Bruch membrane, was elevated ∼86% in the AMD cohort, but autoantibody titers to CEP, CML, and pentosidine were not significantly increased. Compellingly higher mean levels of CML and pentosidine were present in AMD plasma protein over a broad age range. Receiver operating curves indicate that CML, CEP adducts, and pentosidine alone discriminated between AMD and control subjects with 78, 79, and 88% accuracy, respectively, whereas CML in combination with pentosidine provided ∼89% accuracy, and CEP plus pentosidine provided ∼92% accuracy. Pentosidine levels appeared slightly altered in AMD patients with hypertension and cardiovascular disease, indicating further studies are warranted. Overall this study supports the potential utility of plasma protein CML and pentosidine as biomarkers for assessing AMD risk and susceptibility, particularly in combination with CEP adducts and with concurrent analyses of fructosyl-lysine to detect confounding factors.Age-related macular degeneration (AMD)1 is a progressive, multifactorial disease and a major cause of severe vision loss in the elderly (1). Deposition of debris (drusen) in the macular region of Bruch membrane, the extracellular matrix separating the choriocapillaris from the retinal pigment epithelium (RPE), is an early, hallmark risk factor of AMD. The disease can progress to advanced dry AMD (geographic atrophy), which is characterized by regional degeneration of photoreceptor and RPE cells, or to advanced wet AMD (choroidal neovascularization (CNV)), which is characterized by abnormal blood vessels growing from the choriocapillaris through Bruch membrane beneath the retina. CNV accounts for over 80% of debilitating vision loss in AMD; however, only 10–15% of AMD cases progress to CNV.There is growing consensus that AMD is an age-related inflammatory disease involving dysregulation of the complement system; however, triggers of the inflammatory response have yet to be well defined. Oxidative stress appears to be involved as smoking significantly increases the risk of AMD (2), antioxidant vitamins can selectively slow AMD progression (3), and a host of oxidative protein and DNA modifications have been detected at elevated levels in AMD Bruch membrane, drusen, retina, RPE, and plasma (411). Oxidative protein modifications like carboxyethylpyrrole (CEP) and Nε-carboxymethyllysine (CML), both elevated in AMD Bruch membrane, stimulate neovascularization in vivo (12, 13), suggesting possible roles in CNV. Other studies have shown that mice immunized with CEP protein modifications develop an AMD-like phenotype (14). Accordingly oxidative modifications may be catalysts or triggers of AMD pathology (6).AMD has long been hypothesized to be a systemic disease (15) based in part on the presence of retinal drusen in patients with membranoproliferative glomerulonephritis type II (16) and systemic complement activation in AMD (17). Support for this hypothesis also comes from mounting evidence that advanced glycation end products (AGEs) may play a role in AMD (4, 5, 7, 18, 19). AGEs are a heterogeneous group of mostly oxidative modifications resulting from the Maillard nonenzymatic glycation reaction that have been associated with age-related diseases and diabetic complications (20, 21). In 1998, CML was the first AGE to be found in AMD Bruch membrane and drusen (4). Other AGEs have since been detected in AMD ocular tissues (5, 7, 18) and in Bruch membrane, drusen, RPE, and choroidal extracellular matrix from healthy eyes (6, 22). CML, a nonfluorescent AGE, and pentosidine, a fluorescent cross-linking AGE, increase with age in Bruch membrane (18, 23). Receptors for AGEs (RAGE and AGE-R1) appear elevated on RPE and photoreceptor cells in early and advanced dry AMD (7) especially in RPE overlying drusen-like deposits on Bruch membrane (19). AGE-R3, also known as galectin-3, is elevated in AMD Bruch membrane (24).Although AMD susceptibility genes now account for over 50% of AMD cases (25), many individuals with AMD risk genotypes may never develop advanced disease with severe vision loss. Nevertheless the prevalence of advanced AMD is increasing (26). Toward the discovery of better methods to detect those at risk for advanced AMD, we quantified CML and pentosidine in plasma proteins from AMD and control patients and compared their discriminatory accuracy with plasma CEP biomarkers. CEP biomarkers have been shown to enhance the AMD predictive accuracy of genomic AMD biomarkers (11). This report shows CML and pentosidine to be elevated in AMD plasma proteins and demonstrates their potential biomarker utility in assessing AMD risk and susceptibility especially in combination with CEP biomarkers.  相似文献   

16.
The aim of this study was to assess the effect of the angiotensin II receptor blocker Irbesartan on protein damage by glycation, oxidation and nitration in patients with type 2 diabetes and microalbuminuria. In a double-masked randomised crossover trial of 52 hypertensive type 2 diabetic patients, antihypertensive treatment was replaced with bendroflumethiazide. After 2-months wash-out, patients were treated randomly with Irbesartan 300, 600, and 900 mg o.d., each dose for 2 months in a three-way crossover study. Glycation, oxidation and nitration adduct residues in plasma protein and related urinary free adducts were determined by stable isotopic dilution analysis liquid chromatography–tandem mass spectrometry. Treatment with Irbesartan decreased urinary excretion of advanced glycation endproducts (AGEs)—methylglyoxal- and glyoxal-derived hydroimidazolones, MG-H1 and G-H1. Urinary AGEs were decreased by 30–32%. In plasma protein, treatment with Irbesartan increased content of glycation adducts N ε-fructosyl-lysine, AGEs N ε-carboxymethyl-lysine, N ε-carboxyethyl-lysine and pentosidine, and also increased content of oxidation markers N-formylkynurenine and dityrosine. This was attributed to decreased clearance of plasma protein modified by N ε-fructosyl-lysine and oxidative markers through the glomerular filter tightened by Irbesartan treatment. Treatment of patients with type 2 diabetes with Irbesartan decreased urinary excretion of MG-H1, G-H1 and 3-NT, which may result from decreased exposure to these AGEs. This is likely achieved by blocking angiotensin II signalling and related down-regulation of glyoxalase 1 and may contribute to health benefits of Irbesartan therapy.  相似文献   

17.
Advanced glycation end-products (AGEs) are formed over several weeks to months by non-enzymatic glycation and oxidation (“glycoxidation”) reactions between carbohydrate-derived carbonyl groups and protein amino groups, known as the Maillard reaction. Pentosidine is one of the best-characterized AGEs and is accepted as a satisfactory marker for glycoxidation in vivo. The present study was intended to measure pentosidine concentrations in umbilical cord blood from newborns with various gestational ages using our recently established high-performance liquid chromatography method [Tsukahara, H. et al. (2003) Pediatr. Res. 54, 419–424]. Our study demonstrates, for the first time, that pentosidine is detected in most of the umbilical blood samples. This study also shows that the umbilical blood concentrations of pentosidine are considerably lower than normal adult values, but that they increase with gestation progression and fetal growth. Umbilical pentosidine concentrations were significantly elevated in newborns of mothers with preeclampsia compared to those of mothers without preeclampsia. We conclude that accumulation of AGEs and oxidative stress occurs in fetal tissues and organs in utero at the early stage of human life and that their accumulation is augmented in the maternal preeclampsic condition.  相似文献   

18.
Human lens proteins (HLP) become chemically modified by kynurenines and advanced glycation end products (AGEs) during aging and cataractogenesis. We investigated the effects of kynurenines on AGE synthesis in HLP. We found that incubation with 5 mM ribose or 5 mM ascorbate produced significant quantities of pentosidine, and this was further enhanced in the presence of two different kynurenines (200–500 µM): N-formylkynurenine (Nfk) and kynurenine (Kyn). Another related compound, 3-hydroxykynurenine (3OH-Kyn), had disparate effects; low concentrations (10–200 µM) promoted pentosidine synthesis, but high concentrations (200–500 µM) inhibited it. 3OH-Kyn showed similar effects on pentosidine synthesis from Amadori-enriched HLP or ribated lysine. Chelex-100 treatment of phosphate buffer reduced pentosidine synthesis from Amadori-enriched HLP by ∼ 90%, but it did not inhibit the stimulating effect of 3OH-Kyn and EDTA. 3OH-Kyn (100–500 μM) spontaneously produced copious amounts of H2O2 (10–25 μM), but externally added H2O2 had only a mild stimulating effect on pentosidine but had no effect on Nε-carboxymethyl lysine (CML) synthesis in HLP from ribose and ascorbate. Further, human lens epithelial cells incubated with ribose and 3OH-Kyn showed higher intracellular pentosidine than cells incubated with ribose alone. CML synthesis from glycating agents was inhibited 30 to 50% by 3OH-Kyn at concentrations of 100–500 μM. Argpyrimidine synthesis from 5 mM methylglyoxal was slightly inhibited by all kynurenines at concentrations of 100–500 μM. These results suggest that AGE synthesis in HLP is modulated by kynurenines, and such effects indicate a mode of interplay between kynurenines and carbohydrates important for AGE formation during lens aging and cataract formation.  相似文献   

19.
The highly reactive electrophile, methylglyoxal (MG), a break down product of carbohydrates, is a major environmental mutagen having potential genotoxic effects. Previous studies have suggested the reaction of MG with free amino groups of proteins forming advanced glycation end products (AGEs). This results in the generation of free radicals which play an important role in pathophysiology of aging and diabetic complications. MG also reacts with free amino group of nucleic acids resulting in the formation of DNA–AGEs. While the formation of nucleoside AGEs has been demonstrated previously, no extensive studies have been performed to assess the genotoxicity and immunogenicity of DNA–AGEs. In this study we report both the genotoxicity and immunogenicity of AGEs formed by MG–Lys–Cu2+ system. Genotoxicity of the experimentally generated AGEs was confirmed by comet-assay. Spectroscopical analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. This might be due to generation of single-stranded regions and destabilization of hydrogen bonds. Immunogenicity of native and MG–Lys–Cu2+-DNA was probed in female rabbits. The modified DNA was highly immunogenic eliciting high titre immunogen specific antibodies, while the unmodified form was almost non-immunogenic. The results show structural perturbations in MG–Lys–Cu2+-DNA generating new epitopes that render the molecule immunogenic.  相似文献   

20.
Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca2+ transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, N ε-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca2+ kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca2+ transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca2+ cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca2+ cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca2+ dysregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号