首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated that electroacoustic analysis with polyclonal antibodies can be used for bacteriophage detection. The frequency dependences of the real and imaginary parts of electrical impedance of a resonator with a viral suspension with antibodies were shown to be essentially different from the dependences of a resonator with control viral suspension without antibodies. It was shown that ΦAl-Sp59b bacteriophages were detected with the use of antibodies in the presence of foreign virus particles. The ΦAl-Sp59b bacteriophage content in the analyzed suspension was ~1010–106 phages/mL; the time of analysis was no more than 5 min. The optimally informative parameter for obtaining reliable information was the change in the real or imaginary part of electrical impedance at a fixed frequency near the resonance upon the addition of specific antibodies to the analyzed suspension. It was demonstrated that the interaction between bacteriophages and antibodies can be recorded, offering good prospects for the development of a biological sensor for liquid-phase identification and virus detection.  相似文献   

2.
A method for the detection of bacteriophages from ocean water   总被引:3,自引:0,他引:3  
A method for the isolation of bacteriophages from ocean water is described. It precludes sample storage before starting phage-enrichment cultures and provides for the use of 3 sub-samples enriched with organic nutrients after 1, 2 and 3 days of incubation. The method was used with samples collected from 6 m below the surface at 48 stations between the European continental shelf and the Sargasso Sea. With 213 among 931 bacterial isolates about 250 strains of bacteriophages were detected by two methods of different sensitivity. From 14 samples taken east of the Azores 115 host bacteria have been found versus only 98 from 34 samples collected at westerly stations. The employment of more than one sub-sample per station as well as the use of more sensitive phage-detection procedures was found to be more advantageous the lower the concentration of cultivatable bacteria in a sample.  相似文献   

3.
The analysis of autoantibodies in human serum plays a crucial role in the diagnosis and follow-up of autoimmune diseases. The analytical tools available for the determination of these analytes, however, are still far from mature, lack standardization, and give low negative predictive values. Approaches using biosensor technology for analysis are an attractive alternative to classical techniques. In special applications, biosensors already have been proven to be effective for clinical diagnostics. This is due to the fact that real-time monitoring of the antigen/antibody interaction gives valuable information on autoantibody affinity to the respective antigenic structure. The potentials of biosensors for the serological analysis of autoantibodies are evident from the increasing number of publications on the subject. Thus, this review focuses on underlying biosensor techniques and published clinical trials. The advantages of multiplexed analyses of autoantibodies by use of microarrays are also emphasized. This promising bioanalytical technique is also particularly important for the structural identification of novel antigens.  相似文献   

4.
Three genetically distinct groups of Lactococcus lactis phages are encountered in dairy plants worldwide, namely, the 936, c2, and P335 species. The multiplex PCR method was adapted to detect, in a single reaction, the presence of these species in whey samples or in phage lysates. Three sets of primers, one for each species, were designed based on conserved regions of their genomes. The c2-specific primers were constructed using the major capsid protein gene (mcp) as the target. The mcp sequences for three phages (eb1, Q38, and Q44) were determined and compared with the two available in the databases, those for phages c2 and bIL67. An 86.4% identity was found over the five mcp genes. The gene of the only major structural protein (msp) was selected as a target for the detection of 936-related phages. The msp sequences for three phages (p2, Q7, and Q11) were also established and matched with the available data on phages sk1, bIL170, and F4-1. The comparison of the six msp genes revealed an 82. 2% identity. A high genomic diversity was observed among structural proteins of the P335-like phages suggesting that the classification of lactococcal phages within this species should be revised. Nevertheless, we have identified a common genomic region in 10 P335-like phages isolated from six countries. This region corresponded to orfF17-orf18 of phage r1t and orf20-orf21 of Tuc2009 and was sequenced for three additional P335 phages (Q30, P270, and ul40). An identity of 93.4% within a 739-bp region of the five phages was found. The detection limit of the multiplex PCR method in whey was 10(4) to 10(7) PFU/ml and was 10(3) to 10(5) PFU/ml with an additional phage concentration step. The method can also be used to detect phage DNA in whey powders and may also detect prophage or defective phage in the bacterial genome.  相似文献   

5.
The possibility of the application of electro-acoustic analysis for the detection of bacteriophages was demonstrated for the first time based on the example of the interaction of the FA1-Sp59b bacteriophage with bacterial cells of the strain Azospirillum lipoferum Sp59b. Piezoelectric cross-field resonators with a 1-mL chamber for analyzed liquid were used as the biological sensor. It was revealed that the dependences of the real and imaginary parts of the electrical impedance of the resonator loaded with a suspension of viruses and microbial cells on the frequency was significantly different from those dependences of the resonator that contained a control cell suspension without the virus. It was shown that detection of the FA1-Sp59b bacteriophage using microbial cells was possible with both extraneous viral particles and extraneous microbial cells. The proposed method allows one to accurately determine the type of identified virus after a 5-minute interaction with indicating bacterial culture. As well, the minimum concentration of viruses is five virus particles per cell. These results as a whole demonstrate the possibility of detecting specific interactions of bacteriophages with microbial cells and provide a basis for the development of a biological sensor for the quantitative detection of viruses directly in the liquid phase.  相似文献   

6.
The possibility of detecting bacteriophages using phage mini-antibodies by the electroacoustic analysis method using bacteriophages FA1-59b was shown. It was found that the frequency dependence of the real and imaginary parts of the electrical impedance of a resonator with a suspension of phages and the appropriate antibodies significantly differs from that of the resonator with a control virus suspension without addition of mini-antibodies. The amount of FAl-Sp59b bacteriophage in the analyzed suspension varied from ~1010 to 106 phage/mL; the analysis did not take longer than 5 min. The change in the real or imaginary parts of the electrical impedance at the fixed frequency near the resonance after addition of specific mini-antibodies in the suspension appeared to be an optimal information parameter to obtain reliable information. These results may allow the development of a biological sensor to identify and quantify viruses in the liquid phase.  相似文献   

7.
The incidence of foodborne infectious diseases is stable or has even increased in many countries. Consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. However, even today’s modern production techniques and intensive food-monitoring programs have not been able to effectively control the problem. At the same time, increased production volumes are distributed to more consumers, and if contaminated, potentially cause mass epidemics. Accordingly, research directed to improve food safety has also been taken forward, also exploring novel methods and technologies. Such an approach is represented by the use of bacteriophage for specific killing of unwanted bacteria. The extreme specificity of phages renders them ideal candidates for applications designed to increase food safety during the production process. Phages are the natural enemies of bacteria, and can be used for biocontrol of bacteria without interfering with the natural microflora or the cultures in fermented products. Moreover, phages or phage-derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and specific identification of viable cells. This review intends to briefly summarize and explain the principles and current standing of these approaches.  相似文献   

8.
Feng L  Liu Y  Tan Y  Hu J 《Biosensors & bioelectronics》2004,19(11):1513-1519
Despite the increasing number of applications of biosensors in many fields, the construction of a steady biosensor remains still challenging. The high selectivity and stability of molecularly imprinted polymers for the template molecule make them ideal alternatives as recognition elements for sensors. In this work, the fabrication and characterization of biosensor based on molecularly imprinted electrosynthesized polymers is reported as the first case of imprinting sorbitol. A relevant molecularly imprinted film is prepared by o-phenylenediamine (o-PD) using the electrochemical method. Quartz crystal microbalance is employed as a sensitive apparatus of biosensor for the determination of sorbitol. An equation is deduced to characterize the interaction between molecularly imprinted films and the template. A linear relationship between the frequency shift and the concentration of analyte in the range of 1-15 mM was found. The detection limit is about 1mM.  相似文献   

9.
We developed a highly sensitive flow injection/amperometric biosensor for the detection of organophosphate pesticides (OPs) using layered double hydroxides (LDHs) as the immobilization matrix of acetylcholinesterase (AChE). LDHs provided a biocompatible microenvironment to keep the bioactivity of AChE, due to the intrinsic properties of LDHs (such as a regular structure, good mechanical, chemical and thermal stabilities, and swelling properties). By integrating the flow injection analysis (FIA) with amperometric detection, the resulting AChE-LDHs modified electrode greatly catalyzed the oxidation of the enzymatically generated thiocholine product, and facilitated the detection automation, thus increasing the detection sensitivity. The analytical conditions for the FIA/amperometric detection of OPs were optimized by using methyl parathion (MP) as a model. The inhibition of MP was proportional to its concentration ranging from 0.005 to 0.3μgmL(-1) and 0.3 to 4.0μgmL(-1) with a detection limit 0.6ngmL(-1) (S/N=3). The developed biosensor exhibited good reproducibility and acceptable stability.  相似文献   

10.
Microarrays are promising tools for cell isolation and detection. However, they have yet to be widely applied in biology. This stems from a lack of demonstration of their sensitivity and compatibility with complex biological samples, and a lack of proof that their use does not induce aberrant cellular effects. Herein, we characterized and optimized a recently developed technology associating antibody microarrays with surface plasmon resonance imaging (SPRi). Using a murine macrophage cell line we demonstrate the binding specificity of our antibody-microarrays and the correlation between SPRi signals and both the number of bound cells, and the level of expression of cell surface markers. Confocal microscopy reveals that cell binding to the chip through antibody-antigen interactions underwent morphological changes reflecting the density of the relevant cell surface marker without affecting cell viability as shown by fluorescent microscopy. The detection threshold of the microarray-SPRi system is lowered 10-fold by applying a polyethylene oxide film to the gold surface of the chip. This increased sensitivity allows the detection of cells representing as little as 0.5% of a mixed population. The potential of this method is illustrated by two applications: characterization of ligand-cell receptor interactions, allowing determination of receptor specificity, and analysis of peripheral blood mononuclear cells, demonstrating the suitability of this tool for the analysis of complex biological samples.  相似文献   

11.
12.
Despite an increasing interest in horizontal gene transfer in bacteria, the role of generalized transduction in this process has not been well investigated yet. Certainly one of the reasons is that only a small fraction of general transducing bacteriophages have been characterized, because many bacterial hosts needed for propagation and identification are not culturable or are simply unknown. A method for host-independent detection of transducing bacteriophages was developed. Phage-encapsulated DNA was used as a template for PCR amplification of 16S ribosomal DNA using primers specific for the 16S rRNA genes of most eubacteria. Sequencing of the cloned amplification products permits the identification of the host bacteria. The Salmonella phage P22 was used as an example. Applying this method to a sample of the supernatant of the mixed liquor in the aeration tank of an activated sludge treatment works revealed the presence of transducing phages infecting several bacterial species for which such phages have not yet been described. This method is suitable for estimating the contribution of generalized transduction to horizontal gene transfer in different habitats.  相似文献   

13.
Bacteriophage infection of starter cultures constitutes a major problem in the dairy fermentation industry, which may bring about important economic losses. In this study, a rapid detection method of bacteriophages was developed based on analysis of impedance changes occurred upon infection of a host-biofilm established onto metal microelectrodes. Bacteriophage PhiX174 and Escherichia coli WG5 were chosen as models for bacteriophage and host strain, respectively, because of their easiness of manipulation. Impedimetric changes occurring at the microelectrode surface, caused by bacteriophage infection and subsequent lysis of the host strain, were monitored over a 6-h period after the initial inoculation of phages by non-faradic impedance spectroscopy (IS) in PBS and milk samples. Analysis of data was performed by two different approaches: (1) the equivalent circuit modelling theory, where a decrease in the magnitude of both the double layer and the biofilm capacitances due to the bacteriophage infection process was recorded, and (2) analysis of the impedance value, specially the impedance imaginary component (Z(i)) at selected frequencies. Z(i) is related to the capacitance of the circuit and also showed a decrease with respect to the control sample (without bacteriophages). The simplicity of the assay and the possibility of miniaturization of the system as well as its wide application, being able of detecting any bacteriophage as long as a suitable bacterial host is available, increase the number of applications to which this system could be used for.  相似文献   

14.
AIMS: To establish a rapid and efficient method for detecting Enterobacter cloacae based on chitinase gene transformation and lytic infection by virulent bacteriophages. METHODS AND RESULTS: A phylloplane strain of E. cloacae was isolated from tomato leaves and transformed with a chitinase gene. Transformed bacteria were collected from single colonies and infected with newly isolated, virulent bacteriophages in the presence of the chitinase substrate 4-methylumbelliferon (4MU)-(GlcNac)3. To assay chitinase activity in the lysates, the product 4MU was measured spectrofluorophotometrically or visibly detected under u.v. irradiation. Chitinase gene-transformed bacteria obtained from single colonies could be specifically identified in 30 min by the emission of 4MU fluorescence following lysis caused by phage infection. CONCLUSIONS: The chitinase gene was used as a reporter gene to construct a new system for easy and rapid monitoring of transgenic strains of E. cloacae released in the environment, in combination with specific recognition by virulent bacteriophages. SIGNIFICANCE AND IMPACT OF THE STUDY: The assay is simple, rapid, inexpensive, easy to perform and applicable to other strains. The system can be used for the routine monitoring of bacteria, which is important because of the increased use of transgenic strains of E. cloacae as an antagonistic biological control agent for plant diseases.  相似文献   

15.
It is necessary to isolate new phages in order to improve the rate of typeability of Listeria monocytogenes strains. We propose a method which increases the detection of induced phages in the presence of inhibitory substances synthesized or liberated by the cells during phage production. Of the 29 phages isolated, 11 (38%) were detected by the spot-on-the-lawn technique and 18 (62%) were revealed by the soft-agar technique. To increase the rate of phage detection, both techniques appear useful. Listeria cultures were subjected to phage typing procedures utilizing these newly isolated phages and the French International set of phages. It appears that the newly isolated phages are good tools for the differentiation of Listeria strains. Among them, one phage seems to be complementary to the French International set.  相似文献   

16.
Due to the instability of DNA oligonucleotides in biological solutions, antisense or antigene therapies aimed at modulation of specific gene expression will most likely require the use of oligonucleotides with modified backbones. Here, we examine the use of a surface plasmon resonance biosensor (BIAcore) to compare triplex-directed binding of modified oligonucleotides targeted to a region of the murine c-myc promoter. We describe optimization of experimental conditions to minimize nonspecific interactions between the oligonucleotides and the sensor chip surface, and the limitations imposed by certain backbones and sequence types. The abilities of pyrimidine oligonucleotides with various modified backbones to form specific triple helices with an immobilized hairpin duplex were readily determined using the biosensor. Modification of the third-strand oligonucleotide with RNA or 2(')-O-methyl RNA was found to enhance triplex formation, whereas phosphorothioate or phosphotriester substitutions abrogated it. A comparison of these results to DNase I footprinting experiments using the same oligonucleotides showed complete agreement between the two sets of data.  相似文献   

17.
In complex DNA bacteriophages like lambda, T4, T7, P22, P2, the DNA is packaged into a preformed precursor particle which sometimes has a smaller size and often a shape different from that of the phage head. This packaging mechanism is different from the one suggested for the RNA phages, according to which RNA nucleates the shell formation. The different mechanisms could be understood by comparing the genomes to be packaged: single stranded fII RNA has a very compact structure with high helix content. It might easily form quasispherical structures in solution (as seen in the electron microscope by Thach & Thach (1973)) around which the capsid could assemble. Double stranded phage DNA, on the other hand, is a rigid molecule which occupies a large volume in solution and has to be concentrated 15-fold during packaging into the preformed capsid, and the change in the capsid structure observed hereby might provide the necessary DNA condensation energy.  相似文献   

18.
A biosensor based on the enzyme-catalysed dissolution of biodegradable polymer films has been developed. Three polymer-enzyme systems were investigated for use in the sensor: a poly(ester amide), which is degraded by the proteolytic enzyme alpha-chymotrypsin; a dextran hydrogel, which is degraded by dextranase; and poly(trimethylene) succinate, which is degraded by a lipase. Dissolution of the polymer films was monitored by Surface Plasmon Resonance (SPR). The rate of degradation was directly related to enzyme concentration for each polymer/enzyme couple. The poly(ester amide)/alpha-chymotrypsin couple proved to be the most sensitive over a concentration range from 4 x 10(-11) to 4 x 10(-7) mol l(-1) of enzyme. The rate of degradation was shown to be independent of the thickness of the poly(ester amide) films. The dextran hydrogel/dextranase couple was less sensitive than the poly(ester amide)/alpha-chymotrypsin couple but showed greater degradation rates at low enzyme concentrations. Enzyme concentrations as low as 2 x 10(-11) mol l(-1) were detected in less than 20 min. Potential fields of application of such a sensor system are the detection of enzyme concentrations and the construction of disposable enzyme based immunosensors, which employ the polymer-degrading enzyme as an enzyme label.  相似文献   

19.
双乙酰生物传感器的研究   总被引:2,自引:0,他引:2  
试验研究了粪肠杆菌(Enterococcus faecalis)中双乙酰还原酶的提取纯化,以及双乙酰生物传感器制备和测定性能。以双乙酰还原酶和还原型辅酶I(NADH)共固定作为工作酶 膜,用Fe2+/Fe和双乙酰还原过程中产生的NAD+/NADH组成生物传感器,可准确测定0.1~0.5μg/Ml浓度范围内的双乙酰含量,响应时间小于2min。9d内传感器工作性能稳定。研究表明,啤酒内典型的金属离子和有机物在相应浓度内不影响传感器工作性能。同时.试验初步解决了辅酶的再生和溶氧干扰问题。  相似文献   

20.
噬菌体及其裂解酶在食源性致病菌检测和控制中的应用   总被引:1,自引:0,他引:1  
微生物致病菌引起的食源性疾病在全世界频频发生,对人类健康造成严重危害,尤其是致病菌耐药性的出现使常规治疗陷入困境。噬菌体及其编码的裂解酶的发现及应用,为食源性致病菌的检测及生物防治开辟了新的途径。综述噬菌体及其裂解酶在构建食源性致病菌的快速检测方法和生物防治方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号