首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu  Qian-Yi  Kang  Da  Wang  Ru  Ding  A-Qiang  Abbas  Ghulam  Zhang  Meng  Qiu  Lin  Lu  Hui-Feng  Lu  Hui-Jie  Zheng  Ping 《Applied microbiology and biotechnology》2018,102(2):995-1003
Applied Microbiology and Biotechnology - Anaerobic ammonium oxidation (anammox) process is regarded as a promising nitrogen removal technology to treat ammonium wastewaters in a wide concentration...  相似文献   

2.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   

3.
Nitrogen removal with the anaerobic ammonium oxidation process   总被引:3,自引:0,他引:3  
Anaerobic ammonium-oxidizing (anammox) bacteria convert ammonium to N2 with nitrite as the terminal electron acceptor in the absence of O2. Nitritation–anammox bioreactors provide a cost-effective and environment-friendly alternative to conventional nitrification/denitrification nitrogen removal systems. Currently, this process is only applied for ammonium removal from wastewater with high ammonium load and temperature. Nevertheless, recent results obtained with laboratory-scale bioreactors suggest new possible routes of application of the Nitritation–anammox technology including (1) municipal wastewater treatment, removal of (2) methane in combination with nitrite-reducing methane-oxidizing bacteria, (3) nitrate coupled to organic acid oxidation and (4) nitrogen oxides. The current review summarizes the state-of-the-art of the application of Nitritation–anammox systems and discusses the possibilities of utilizing these recent results for wastewater treatment.  相似文献   

4.
Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.  相似文献   

5.
Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost‐effective and environment‐friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.  相似文献   

6.
Anaerobic ammonium oxidation (anammox) process has been becoming a promising technology for the removal of nitrogenous contaminants from wastewater. In short-term batch tests, we observed the anaerobic ammonium oxidizing activity of anammox consortium increased as the magnetic field varied in the range of 16.8-95.0mT. A maximum 50% increase was obtained at the value of 75.0mT. In order to study long-term effect of magnetic field on anammox consortium, an anammox reactor with magnetic field of 60.0mT was operated in laboratory-scale. The results demonstrated that a significant 30% increase in maximum nitrogen removal rate and an approximate 1/4 saving in cultivation time were achieved by using the magnetic system. Microbiological composition analysis showed that bacterial diversity in the reactor decreased under magnetic-exposed condition. Nevertheless, some strains belonging to Planctomycetales were highly enriched. These findings indicated that the magnetic field was useful and reliable for fast start-up of anammox process since it was proved as a simple and convenient approach to enhance anaerobic ammonium oxidizing activity.  相似文献   

7.
Ni SQ  Gao BY  Wang CC  Lin JG  Sung S 《Bioresource technology》2011,102(3):2448-2454
The possibility to introduce the exotic anammox sludge to seed the pilot-scale anammox granular reactor and its fast start-up for treating high nitrogen concentration wastewater were evaluated in this study. The reactor was started up successfully in two weeks; in addition, high nitrogen removal was achieved for a long period. Stoichiometry molar ratios of nitrite conversion and nitrate production to ammonium conversion were calculated to be 1.26 ± 0.02:1 and 0.26 ± 0.01:1, respectively. The Stover-Kincannon model which was first applied in granular anammox process indicated that the granular anammox reactor possessed high nitrogen removal potential of 27.8 kg/m3/d. The anammox granules in the reactor were characterized via microscope observation and fluorescence in situ hybridization technique. Moreover, the microbial community of the granules was quantified to be composed of 91.4-92.4% anammox bacteria by real-time polymerase chain reaction. This pilot study can elucidate further information for industrial granular anammox application.  相似文献   

8.
The feasibility of an anaerobic ammonium oxidation (anammox) process combined with a cell-immobilization technique for autotrophic nitrogen removal was investigated. Anammox biomass was cultivated from local activated sludge and achieved significant anammox activity in 6 months. The development of a mature anammox biomass was confirmed by fluorescence in situ hybridization (FISH) analysis and off-line activity measurements. The abundance fraction of the anammox bacteria determined by FISH analysis was estimated by software. The anaerobic ammonia oxidizers occupied almost half of the total cells. Additionally, the anammox biomass was granulated as spherical gel beads of 3-4 mm in diameter by using a cell-immobilization technique. The nitrogen removal activity was proved to be successfully retained in the beads, with about 80% of nitrogenous compounds (NH(4) (+), NO(2) (- )and total nitrogen) removed after 48 h. These results offer a promising technique for the preservation of anammox microorganisms, the protection of them against the unfavorable surroundings, and the prevention of biomass washout towards the implementation of sustainable nitrogen elimination biotechnology. This is the first report on the immobilization of anammox biomass as gel beads.  相似文献   

9.
Liu S  Yang F  Gong Z  Meng F  Chen H  Xue Y  Furukawa K 《Bioresource technology》2008,99(15):6817-6825
The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.  相似文献   

10.
A combination of anammox and denitrification process was studied for 300 days in low ammonium-fed bioreactors under the support of organic carbon. Nutrient profiles, (15)N-labelling techniques and qualitative fluorescence in situ hybridization (FISH) probes were used to confirm the nitrogen removal pathways and intercompetition among different bacteria populations. About 80% of nitrogen removal was achieved throughout the study period. The results confirmed that anammox bacteria were absent in the bioreactor inoculated with anaerobic granules only but they were present and active in the central anoxic parts of biopellets in the bioreactor inoculated with mixed microbial consortium from activated sludge and anaerobic granules. It also showed that the anammox bacteria were successfully enriched in the low ammonium-fed bioreactors. Results of this study clearly demonstrated that anammox and denitrification processes could coexist in same environment and anammox bacteria were less competitive than denitrifying bacteria.  相似文献   

11.
In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N?H? and NH?OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L?1 of each NH?OH and N?H?, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO??. Various combinations of N?H?, NH?OH, NH??, and NO?? were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N?H? concentration (4.38 mg N L?1) present in these batches was 5.43 mg N g?1 TSS h?1, whereas equimolar concentrations of N?H? and NH?OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.  相似文献   

12.
厌氧氨氧化菌的中心代谢研究进展   总被引:2,自引:0,他引:2  
陆慧锋  丁爽  郑平 《微生物学报》2011,51(8):1014-1022
摘要: 厌氧氨氧化是以NH +4为电子供体,以NO-2为电子受体产生N2的生物反应。厌氧氨氧化菌是厌氧氨氧化过程的执行者,在废水生物脱氮和地球氮素循环中扮演着重要角色。研究厌氧氨氧化菌的代谢特性,将有助于理解厌氧氨氧化过程,开发厌氧氨氧化工艺。厌氧氨氧化菌是化能自养型细菌,以CO2或HCO-3为碳源,并通过偶联NH+4氧化和NO -2还原的生物反应获得能量。在NH+4/NO-2的生物氧化还原反应过程中,检出了中间产物N2H4,但未检出其他中间产物(如NH2OH、NO)。此外,由基因组信息推断,厌氧氨氧化菌  相似文献   

13.
Adaptation of a freshwater anammox population to high salinity wastewater   总被引:18,自引:0,他引:18  
For the successful application of anaerobic ammonium oxidation (anammox) in wastewater practice it is important to know how to seed new anammox reactors with biomass from existing reactors. In this study, a new high salinity anammox reactor was inoculated with biomass from a freshwater system. The changes in activity and population shifts were monitored. It was shown that freshwater anammox bacteria could adapt to salt concentrations as high as 30 gl(-1) provided the salt concentration was gradually increased. Higher salt concentrations reversibly inhibited anammox bacteria. The nitrogen removal efficiency and maximum anammox activity of the salt adapted sludge was very similar to the reference freshwater sludge. Fluorescence in situ hybridization analysis revealed that the freshwater anammox species Candidatus "Kuenenia stuttgartiensis" was the dominant in both salt adapted sludge and freshwater sludge. These results show that gradual adaptation may be the key to successful seeding of anammox bioreactors.  相似文献   

14.
The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".  相似文献   

15.
厌氧氨氧化与反硝化耦合反应研究进展   总被引:5,自引:1,他引:4  
厌氧氨氧化是氮循环中一个重要的反应,对处理含高氨氮废水具有重大的潜在实际应用价值.高浓度有机碳源对厌氧氨氧化反应具有明显的抑制作用.如何在有机碳源存在的条件下实现厌氧氨氧化与反硝化的耦合,是实现厌氧氨氧化工程应用面临的巨大挑战.本文综述了有关厌氧氨氧化与反硝化耦合反应机理、反应功能性微生物种群、耦合工艺启动、过程调控及环境影响因素等的最新研究进展,并对厌氧氨氧化与反硝化耦合反应研究前景及其在废水处理中的应用进行了展望.  相似文献   

16.
有机碳源下废水厌氧氨氧化同步脱氮除碳   总被引:1,自引:0,他引:1  
为明确有机碳源胁迫下,厌氧氨氧化反应器的同步脱氮除碳规律及功能微生物群落结构的动态变化,采用成功启动的厌氧氨氧化UASB反应器,通过逐步提升进水有机负荷,探究有机碳源下废水厌氧氨氧化同步脱氮除碳。研究表明,当进水化学需氧量(Chemical oxygen demand,COD)浓度从172 mg/L升至620 mg/L,反应器维持较高的脱氮效率,氨氮和总氮去除率均在85%以上,并对COD具有平均56.6%的去除率,高浓度COD未对Anammox菌活性构成显著抑制作用。聚合酶链式反应和变性梯度凝胶电泳(PCR-DGGE)图谱和割胶测序结果表明,变形菌门Proteobacteria、浮霉菌门Planctomycetes、绿曲挠菌门Chloroflexi以及绿菌门Chlorobi等微生物共存于同一反应体系中,推测反应器内存在复杂的脱氮除碳途径。而且,代表厌氧氨氧化的部分浮霉菌门微生物能耐受高浓度有机碳源,在高有机负荷下依旧发挥着高效的脱氮作用,为反应器高效脱氮提供了保障。  相似文献   

17.
Anaerobic ammonium oxidation is a recent addition to the microbial nitrogen cycle, and its metabolic pathway, including the production and conversion of its intermediate hydrazine, is not well understood. Therefore, the effect of hydroxylamine addition on the hydrazine metabolism of anaerobic ammonium-oxidizing (anammox) bacteria was studied both experimentally and by mathematical modeling. It was observed that hydroxylamine was disproportionated biologically in the absence of nitrite into dinitrogen gas and ammonium. Little hydrazine accumulated during this process; however, rapid hydrazine production was observed when nearly all hydroxylamine was consumed. A mechanistic model is proposed in which hydrazine is suggested to be continuously produced from ammonium and hydroxylamine (possibly via nitric oxide) and subsequently oxidized to N(2). The electron acceptor for hydrazine oxidation is hydroxylamine, which is reduced to ammonium. A decrease in the hydroxylamine reduction rate, therefore, leads to a decrease in the hydrazine oxidation rate, resulting in the observed hydrazine accumulation. The proposed mechanism was verified by a mathematical model which could explain and predict most of the experimental data.  相似文献   

18.
Ma Y  Hira D  Li Z  Chen C  Furukawa K 《Bioresource technology》2011,102(12):6650-6656
The anaerobic ammonium oxidation (anammox) process has attracted considerable attention in recent years as an alternative to conventional nitrogen removal technologies. In this study, an innovative hybrid reactor combining fluidized and fixed beds for anammox treatment was developed. The fluidized bed was mechanically stirred and the gaseous product could be rapidly released from the anammox sludge to prevent washout of the sludge caused by floatation. The fixed bed comprising a non-woven biomass carrier could efficiently catch sludge to reduce washout. During the operation, nitrogen loading rates to the reactor were increased to 27.3 kg N/m3/d, with total nitrogen removal efficiencies of 75%. The biomass concentration in the fluidized bed reached 26-g VSS/L. Anammox granules were observed in the reactors, with settling velocities and sludge volumetric index of 27.3 ± 6.5 m/h and 23 mL/g, respectively. Quantification of extracellular polymeric substances revealed the anammox granules contained a significant amount of extracellular proteins.  相似文献   

19.
In this study, a non-woven rotating biological contactor reactor was operated for the start-up of completely autotrophic nitrogen removal over nitrite (CANON) process. In this perfectly attached growth system, nitrite oxidizing was identified, which interfered with the nitrogen removal performance. Batch tests indicated that 10 g NaCl per liter salinity was a preferable definite level to stand out ammonium-oxidizing activity and anammox activity, and selectively suppress nitrite-oxidizing activity under oxygen-limited conditions. Reactor operation showed that the maximum TN removal rate was increased from 425 mg N l(-1) day(-1) to 637 mg N l(-1) day(-1) after the addition of 10 g NaCl per liter salinity on analogous technological parameters. Microbiological community analysis revealed that bacteria strains similar to the genus Nitrospira sp. were specialized nitrite oxidizers existing in CANON reactor, which were then eliminated under salinity exposure for their no salinity-tolerant relative. However, anammox bacteria belonging to Planctomycetes and some aerobic ammonium oxidizers belonging to Nitrosomonas could be highly enriched under this oxygen-limited salinity conditions. Salinity-contained high ammonium wastewater will be so considered as suitable influent for CANON process in further industrial application.  相似文献   

20.
Sequencing batch reactors were used to study anaerobic ammonium oxidation (anammox) process under temperature shock. Both long-term (15–35 °C) and short-term (10–50 °C) temperature effects on nitrogen removal performance were performed. In reactor operation test, the results indicated that ammonium removal rate decreased from 0.35 kg/(m3 day) gradually to 0.059 kg/(m3 day) when temperature dropped from 35 to 15 °C. Although bacteria morphology was not modified, sludge settling velocity decreased with decreasing temperature. In batch test, apparent activation energy (Ea) increased with decreasing temperature, which suggested the activity decrease of anaerobic ammonium oxidizing bacteria (AAOB). Low temperature inhibited AAOB and weakened nitrogen removal performance. The cardinal temperature model with inflection was first used to describe temperature effect on anammox process. Simulated results revealed that anammox reaction could occur at 10.52–50.15 °C with maximum specific anammox activity of 0.50 kg/(kg day) at 36.72 °C. The cold acclimatization of AAOB could be achieved and glycine betaine could slightly improve nitrogen removal performance at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号