首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial depolarization promotes apoptotic and necrotic cell death and possibly other cellular events. Polarized mitochondria take up cationic tetramethylrhodamine methylester (TMRM), which is released after depolarization. Thus, TMRM does not label depolarized mitochondria. To identify both polarized and depolarized mitochondria in living cells, cultured rat hepatocytes, and sinusoidal endothelial cells were co-loaded with green-fluorescing MitoTracker Green FM (MTG) and red-fluorescing TMRM for imaging by laser scanning confocal microscopy. Like TMRM, MTG is a cationic fluorophore that accumulates electrophoretically into polarized mitochondria. Unlike TMRM, MTG binds covalently to intramitochondrial protein thiols and remains bound after depolarization. In cells labeled only with MTG, excitation with blue (488 nm) light yielded green but almost no red fluorescence. After subsequent loading with TMRM, green MTG fluorescence became quenched. Instead, blue excitation yielded red fluorescence. Mitochondrial de-energization restored green fluorescence and abolished red fluorescence. Conversely, when MTG was added to TMRM-labeled cells, red fluorescence excited by blue light was enhanced, an effect again reversed by de-energization. These observations of reversible quenching of donor fluorescence and augmentation of acceptor fluorescence signify fluorescence resonance energy transfer (FRET). In undisturbed hepatocytes, spontaneous depolarization of a subfraction of mitochondria was an ongoing phenomenon. In conclusion, confocal FRET discriminates individual depolarized mitochondria against a background of hundreds of polarized mitochondria.  相似文献   

2.
We developed a computational model of mitochondrial energetics that includes Ca2+, proton, Na+, and phosphate dynamics. The model accounts for distinct respiratory fluxes from substrates of complex I and complex II, pH effects on equilibrium constants and enzyme kinetics, and the acid-base equilibrium distributions of energy intermediaries. We experimentally determined NADH and ΔΨm in guinea pig mitochondria during transitions from de-energized to energized, or during state 2/4 to state 3 respiration, or into hypoxia and uncoupling, and compared the results with those obtained in model simulations. The model quantitatively reproduces the experimentally observed magnitude of ΔΨm, the range of NADH levels, respiratory fluxes, and respiratory control ratio upon transitions elicited by sequential additions of substrate and ADP. Simulation results are also able to mimic the change in ΔΨm upon addition of phosphate to state 4 mitochondria, leading to matrix acidification and ΔΨm polarization. The steady-state behavior of the integrated mitochondrial model qualitatively simulates the dependence of respiration on the proton motive force, and the expected flux-force relationships existing between respiratory and ATP synthesis fluxes versus redox and phosphorylation potentials. This upgraded mitochondrial model provides what we believe are new opportunities for simulating mitochondrial physiological behavior during dysfunctional states involving changes in pH and ion dynamics.  相似文献   

3.
《Autophagy》2013,9(8):1099-1106
In primary culture, hepatocytes dedifferentiate, and their cytoplasm undergoes remodeling. Here, our aim was to characterize changes of mitochondria during

remodeling. Hepatocytes were cultured 1 to 5 days in complete serum-containing Waymouth’s medium. In rat hepatocytes loaded with MitoTracker Green (MTG),

tetramethylrhodamine methylester (TMRM), and/or LysoTracker Red (LTR), confocal microscopy revealed that mitochondria number and mass decreased by approximately

50% between Day 1 and Day 3 of culture. As mitochondria disappeared, lysosomes/autophagosomes proliferated 5-fold. Decreased mitochondrial content

correlated with (a) decreased cytochrome c oxidase activity and mitochondrial number observed by electron microscopy and (b) a profound decrease of PGC-1α mRNA

expression. By contrast, mtDNA content per cell remained constant from the first to the third day of culture, although ethidium bromide (de novo mtDNA synthesis inhibitor)

caused mtDNA to decrease by half from the first to the third culture day. As mitochondria disappeared, their MTG label moved into LTR-labeled lysosomes, which

was indicative of autophagic degradation. A multiwell fluorescence assay revealed a 2.5-fold increase of autophagy on Day 3 of culture, which was decreased by 3-

methyladenine, an inhibitor of autophagy, and also by cyclosporin A and NIM811, both selective inhibitors of the mitochondrial permeability transition (MPT). These findings

indicate that mitochondrial autophagy (mitophagy) and the MPT underlie mitochondrial remodeling in cultured hepatocytes.  相似文献   

4.
In rat liver mitochondria, the macrocyclic polyether, dibenzo-18-crown-6 (polyether XXVIII) inhibits the oxidation of NAD-dependent substrates, as stimulated by ADP, uncouplers and valinomycin plus K+. It does not inhibit the oxidation of succinate. It is concluded that polyether XXVIII inhibits electron transfer in the NADH-CoQ span of the respiratory chain. This is a process that is reversed by menadione. Inhibition of oxidation of NAD-dependent substrates in K+-depleted mitochondria induced by the polyether is reversed by concentrations of K+ higher than 60 mM, and also by Li+, a cation that does not complex with polyether XXVIII. As assayed by swelling mitochondria, reversal of the inhibition of electron transfer is accompanied by influx of monovalent cations. Polyether XXVIII also inhibits in submitochondrial particles the aerobic oxidation of NADH, but not that of succinate; this inhibition is also reversed by K+ at high concentrations, and Li+. The data are consistent with the hypothesis that a monovalent cation is required for maximal rates of electron transport in the NADH-CoQ span of the respiratory chain.  相似文献   

5.
Recent studies have shown that reduction in mitochondrial membrane potential (ΔΨm) and generation of reactive oxygen species are early events in apoptosis. In this study, we present two different models of apoptotic cell death, Chinese hamster ovary (CHO) cells treated with aphidicolin and dexamethasone-treated 2B4 T-cell hybridoma cells, which display opposing mitochondrial changes. CHO cells arrested at G1/S with aphidicolin have a progressive increase in mitochondria mass and number, assessed by flow cytometry and fluorescent microscopy with mitochondria-specific probes. The increase in mitochondrial mass was not accompanied by a gain in net cellular mitochondrial membrane potential, consistent with an accumulation of relatively depolarized mitochondria. Fluorescent microscopy demonstrated an increased content of low ΔΨmmitochondria in aphidicolin-treated CHO cells, but high ΔΨmmitochondria were also present and remained stable in number. Mitochondrial mass correlated with decreased clonogenicity of aphidicolin-treated CHO cells. Cycloheximide prevented both the proliferation of mitochondria and subsequent cell death. In contrast, dexamethasone treatment of 2B4 T-cell hybridoma cells caused a decrease in ΔΨmwithout mitochondrial proliferation. Cycloheximide and Bcl-2 overexpression inhibited the loss of ΔΨm, as well as apoptosis. In both models, cell death was associated with a decrease in mitochondrial potential relative to mitochondrial mass, suggesting that an accumulation of damaged or dysfunctional mitochondria had occurred.  相似文献   

6.
Modulation of mitochondrial free Ca2 + ([Ca2 +]m) is implicated as one of the possible upstream factors that initiates anesthetic-mediated cardioprotection against ischemia–reperfusion (IR) injury. To unravel possible mechanisms by which volatile anesthetics modulate [Ca2 +]m and mitochondrial bioenergetics, with implications for cardioprotection, experiments were conducted to spectrofluorometrically measure concentration-dependent effects of isoflurane (0.5, 1, 1.5, 2 mM) on the magnitudes and time-courses of [Ca2 +]m and mitochondrial redox state (NADH), membrane potential (ΔΨm), respiration, and matrix volume. Isolated mitochondria from rat hearts were energized with 10 mM Na+- or K+-pyruvate/malate (NaPM or KPM) or Na+-succinate (NaSuc) followed by additions of isoflurane, 0.5 mM CaCl2 (≈ 200 nM free Ca2 + with 1 mM EGTA buffer), and 250 μM ADP. Isoflurane stepwise: (a) increased [Ca2 +]m in state 2 with NaPM, but not with KPM substrate, despite an isoflurane-induced slight fall in ΔΨm and a mild matrix expansion, and (b) decreased NADH oxidation, respiration, ΔΨm, and matrix volume in state 3, while prolonging the duration of state 3 NADH oxidation, respiration, ΔΨm, and matrix contraction with PM substrates. These findings suggest that isoflurane's effects are mediated in part at the mitochondrial level: (1) to enhance the net rate of state 2 Ca2 + uptake by inhibiting the Na+/Ca2 + exchanger (NCE), independent of changes in ΔΨm and matrix volume, and (2) to decrease the rates of state 3 electron transfer and ADP phosphorylation by inhibiting complex I. These direct effects of isoflurane to increase [Ca2 +]m, while depressing NCE activity and oxidative phosphorylation, could underlie the mechanisms by which isoflurane provides cardioprotection against IR injury at the mitochondrial level.  相似文献   

7.
Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the function of the mitochondria. Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from other brain regions.  相似文献   

8.
Direct reaction of NAD(P)H with oxidants like singlet oxygen ((1)O(2)) has not yet been demonstrated in biological systems. We therefore chose different rhodamine derivatives (tetramethylrhodamine methyl ester, TMRM; 2',4',5',7'-tetrabromorhodamine 123 bromide; and rhodamine 123; Rho 123) to selectively generate singlet oxygen within the NAD(P)H-rich mitochondrial matrix of cultured hepatocytes. In a cell-free system, photoactivation of all of these dyes led to the formation of (1)O(2), which readily oxidized NAD(P)H to NAD(P)(+). In hepatocytes loaded with the various dyes only TMRM and Rho 123 proved suited to generating (1)O(2) within the mitochondrial matrix space. Photoactivation of the intracellular dyes (TMRM for 5-10 s, Rho 123 for 60 s) led to a significant (29.6 +/- 8.2 and 30.2 +/- 5.2%) and rapid decrease in mitochondrial NAD(P)H fluorescence followed by a slow increase. Prolonged photoactivation (> or =15 s) of TMRM-loaded cells resulted in even stronger NAD(P)H oxidation, the rapid onset of mitochondrial permeability transition, and apoptotic cell death. These results demonstrate that NAD(P)H is the primary target for (1)O(2) in hepatocyte mitochondria. Thus NAD(P)H may operate directly as an intracellular antioxidant, as long as it is regenerated. At cell-injurious concentrations of the oxidant, however, NAD(P)H depletion may be the event that triggers cell death.  相似文献   

9.
The functional stability of the ‘external’ NADH dehydrogenase and complexes I–IV of the respiratory chain of maize mitochondria was studied during mitochondria incubation in vitro at elevated temperatures. The increase in the incubation temperature from 0°C to 37°C significantly changed the stability of the respiratory chain. At 27°C and higher, the rate of oxidation of NAD-depended substrates decreased drastically, which is related to inactivation of complex I. Complexes II, III and IV of the respiratory chain and the ‘external’ NADH dehydrogenase were functionally stable at elevated temperatures. Moreover, the possibility of electron transport during oxidation of NAD-dependent substrates, in particular malate, bypasses complex I using rotenon insensitive NADH dehydrogenase.  相似文献   

10.
The tetrazolium salt 3(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) is reduced to formazan by the succinate dehydrogenase system of active mitochondria, and hence, specifically used to assay for the viable cells, such as measurement of cell proliferation, cytotoxicity, and cell number. However, in the present study we have shown that some component specifically present in M199 but not in RPMI 1640 media can reduce MTT to formazan in the absence of a living system. Further study revealed that ascorbic acid reduced MTT to formazan, which was profoundly increased by a very small amount of retinol, whereas retinol alone had no effect. Oxidation of ascorbic acid by H2O2 destroyed its ability to reduce MTT. The rate of MTT reduction was directly proportional to the concentration of MTT in the absence of retinol, but approached a zero‐order state beyond a certain concentration of MTT in the presence of retinol. Furthermore, retinol remained unchanged after the completion of the reaction. Taken together, these results showed that retinol acts as a reductase that catalyzes the reduction of MTT to formazan using ascorbic acid as the cosubstrate (electron donor). J. Cell. Biochem. 80:133–138, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

11.
Tetramethylrhodamine methyl ester (TMRM) is a fluorescent dye used to study mitochondrial function in living cells. Previously, we reported that TMRM effectively labeled mitochondria of neurons deep within mouse brain slices. Use of micromolar concentration of dye, which was required to get sufficient staining for two-photon imaging, resulted in typical fluctuations of TMRM. With prolonged exposure, we recorded additional responses in some neurons that included slow oscillations and propagating waves of fluorescence. (Note: We use the terms “fluctuation” to refer to a change in the fluorescent state of an individual mitochondrion, “oscillation” to refer to a localized change in fluorescence in the cytosol, and “wave” to refer to a change in cytosolic fluorescence that propagated within a cell. Use of these terms does not imply any underlying periodicity.) In this report we describe similar results using cultured rat hippocampal neurons. Prolonged exposure of cultures to 2.5 µM TMRM produced a spontaneous increase in fluorescence in some neurons, but not glial cells, after 45–60 minutes that was followed by slow oscillations, waves, and eventually apoptosis. Spontaneous increases in fluorescence were insensitive to high concentrations of FCCP (100 µM) and thapsigargin (10 µM) indicating that they originated, at least in part, from regions outside of mitochondria. The oscillations did not correlate with changes in intracellular Ca2+, but did correlate with differences in fluorescence lifetime of the dye. Fluorescence lifetime and one-photon ratiometric imaging of TMRM suggested that the spontaneous increase and subsequent oscillations were due to movement of dye between quenched (hydrophobic) and unquenched (hydrophilic) compartments. We propose that these movements may be correlates of intracellular events involved in early stages of apoptosis.  相似文献   

12.
Abstract: Perhaps the most reproducible early event induced by the interaction of amyloid β peptide (Aβ) with the cell is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. We recently demonstrated that cytotoxic amyloid peptides such as Aβ and human amylin inhibit cellular MTT reduction by dramatically enhancing MTT formazan exocytosis. We now show the following: (a) Insulin and glucagon, when converted to fibrils with β-pleated sheet structure, induce MTT formazan exocytosis that is indistinguishable from that induced by Aβ. NAC35, an amyloidogenic fragment of α-synuclein (or NACP), also induces MTT formazan exocytosis. (b) All protein fibrils with the β-pleated sheet structure examined are toxic to rat hippocampal neurons. (c) Many sterol sex hormones (e.g., estradiol and progesterone) block amyloid fibril-enhanced MTT formazan exocytosis as well as MTT formazan exocytosis in control cells by acting at a common late step in the exocytic pathway. Steroids fail, however, to protect hippocampal neurons from acute amyloid fibril toxicity. These findings suggest that the ability to enhance MTT formazan exocytosis and to induce neurotoxicity are common biological activities of protein fibrils with β-pleated sheet structure but that enhanced MTT formazan exocytosis is not sufficient for acute Aβ neurotoxicity.  相似文献   

13.
The effect of the in vivo thyroid status on mitochondrial membrane potential (ΔΨm) in isolated rat hepatocytes was studies by means of a cytofluorimetric technique and the ΔΨm-specific probe JC-1. It is shown that the ΔΨm level decreases in the order hypothyroid>euthyroid>hyperthyroid. Polarographic measurement of the hepatocyte respiratory rates revealed an opposite trend of values: the highest respiratory rate in hepatocytes from hyperthyroid animals, the lowest in those from hypothyroid ones. This means that mitochondrial energy coupling is highest in hypothyroid hepatocytes and lowest in hyperthyroid hepatocytes. 6-Ketocholestanol added to hepatocytes failed to counterbalance the uncoupling effect of thyroid hormones on ΔΨm and respiration rate. Under the same conditions, 6-ketocholestanol appeared to be effective in recoupling of respiration uncoupled by low concentrations of the artificial protonophore FCCP. The mechanism and possible physiological functions of the thyroid hormone-induced decrease in mitochondrial energy coupling are discussed.  相似文献   

14.
Glutamate dehydrogenase in Acanthamoeba castellanii is an NAD-dependent cytosolic enzyme. This is similar to glutamate dehydrogenases in Phycomycetes, but very different from the dual coenzyme-specific enzymes located in mitochondria in animals and in mitochondria and chloroplasts in higher plants. Pyrroline-5-carboxylate (P-5-C) reductase occurs also in the cytoplasm in A. castellanii and has very high affinities for L-P-5-C (Km= 12 μM) and NADH (Km= 15 μM). In contrast, ornithine aminotransferase and proline oxidase are mitochondrial enzymes. No proline-inhibited γ-glutamyl kinase was detected while an active glutamine synthetase was found in the cytosolic compartment. Evidence for a mitochondrial transport system for L-proline was obtained. Two possible pathways for proline biosynthesis in A. castellanii are discussed based on information obtained about activities and subcellular compartmentation of enzymes.  相似文献   

15.
BACKGROUND: Chloromethyl-X-rosamine (CMXRos) and MitoTracker Green (MTG) have proved to be useful dyes with which to measure mitochondrial function. CMXRos is a lipophilic cationic fluorescent dye that is concentrated inside mitochondria by their negative mitochondrial membrane potential (MMP). MTG fluorescence has been used as a measure of mitochondrial mass independent of MMP. The fluorescence ratio of the two dyes is a relative measure of the MMP independent of mitochondrial mass. Because MTG was recently reported to be sensitive to MMP, we have reevaluated the effects of loss of MMP on MTG and CMXRos fluorescence, using both flow cytometry and laser scanning confocal microscopy (LSCM). METHODS: Using flow cytometry, the relative fluorescence of CMXRos, R123, and MTG was determined in human lymphoblastoid cell lines (LCLs) with or without carbonyl cyanide p-trifluoromethoxylphenyl-hydrazone (FCCP), used to collapse the MMP. LSCM analysis was also used to evaluate the effect of FCCP on MTG and CMXRos fluorescence of mouse cells and viable lenses in culture. The cytotoxicity of the dyes was determined using flow analysis of endogenous NADH fluorescence. The sensitivity of MTG fluorescence to H(2)O(2) was also evaluated using flow cytometry. RESULTS: CMXRos fluorescence was dependent on MMP, whereas MTG fluorescence was not affected by MMP, using either flow or LSCM. Specific staining of mitochondria was seen with both dyes in all cell types tested, without evidence of cytotoxicity, as determined by NADH levels. H(2)O(2) damage slightly increased MTG staining of cells. CONCLUSIONS: Our results indicate that CMXRos is a nontoxic sensitive indicator of relative changes in MMP, whereas MTG is relatively insensitive to MMP and oxidative stress, using both flow and LSCM analyses, provided optimal staining conditions are used. In addition, these dyes can be useful for the study of mitochondrial morphology and function in whole tissues, using LSCM.  相似文献   

16.
Abstract: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction is one of the most frequently used methods for measuring cell proliferation and neural cytotoxicity. It is widely assumed that MTT is reduced by active mitochondria in living cells. By using isolated mitochondria from rat brain and B12 cells, we indeed found that malate, glutamate, and succinate support MTT reduction by isolated mitochondria. However, the data presented in this study do not support the exclusive role of mitochondria in MTT reduction by intact cells. Using a variety of approaches, we found that MTT reduction by B12 cells is confined to intracellular vesicles that later give rise to the needle-like MTT formazan at the cell surface. Some of these vesicles were identified as endosomes or lysosomes. In addition, MTT was found to be membrane impermeable. These and other results suggest that MTT is taken up by cells through endocytosis and that reduced MTT formazan accumulates in the endosomal/lysosomal compartment and is then transported to the cell surface through exocytosis.  相似文献   

17.
Glioblastoma is the most common and malignant brain cancer. In spite of surgical removal, radiation and chemotherapy, this cancer recurs within short time and median survival after diagnosis is less than a year. Glioblastoma stem cells (GSCs) left in the brain after surgery is thought to explain the inevitable recurrence of the tumor. Although hypoxia is a prime factor contributing to treatment resistance in many cancers, its effect on GSC has been little studied. Especially how differentiation influences the tolerance to acute hypoxia in GSCs is not well explored. We cultured GSCs from three patient biopsies and exposed these and their differentiated (1- and 4-weeks) progeny to acute hypoxia while monitoring intracellular calcium and mitochondrial membrane potential (ΔΨm). Undifferentiated GSCs were not hypoxia tolerant, showing both calcium overload and mitochondrial depolarization. One week differentiated cells were the most tolerant to hypoxia, preserving intracellular calcium stability and ΔΨm during 15 min of acute hypoxia. After 4 weeks of differentiation, mitochondrial mass was significantly reduced. In these cells calcium homeostasis was maintained during hypoxia, although the mitochondria were depolarized, suggesting a reduced mitochondrial dependency. Basal metabolic rate increased by differentiation, however, low oxygen consumption and high ΔΨm in undifferentiated GSCs did not provide hypoxia tolerance. The results suggest that undifferentiated GSCs are oxygen dependent, and that limited differentiation induces relative hypoxia tolerance. Hypoxia tolerance may be a factor involved in high-grade malignancy. This warrants a careful approach to differentiation as a glioblastoma treatment strategy.  相似文献   

18.
Abstract: Based on a number of lines of evidence, we have proposed recently that a very early step in the pathogenesis of idiopathic Parkinson's disease might be elevated translocation of l -cysteine into neuromelanin-pigmented dopaminergic cell bodies in the substantia nigra. In vitro studies suggest that such an influx of l -cysteine would divert the neuromelanin pathway by scavenging dopamine-o-quinone, the proximate autoxidation product of dopamine, to give 5-S-cysteinyldopamine, which is oxidized further to 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1) and other cysteinyldopamines and dihydrobenzothiazines. In this study, it is demonstrated that DHBT-1 inhibits ADP-stimulated oxidation of malate and pyruvate (state 3 or complex I respiration) when incubated with intact rat brain mitochondria with an IC50 of ~0.80 mM. Incubation of DHBT-1 with freeze-thawed rat brain mitochondria in both the presence and absence of KCN and/or NADH causes an irreversible, time-dependent decrease of NADH-coenzyme Q1 reductase activity. Significantly lower concentrations of DHBT-1 are necessary to cause this effect when mitochondrial membranes are incubated in the absence of KCN and NADH. The irreversible inhibition of mitochondrial complex I caused by DHBT-1 under the latter conditions could be blocked only partially by glutathione, ascorbic acid, superoxide dismutase, or catalase. Together, these results suggest that DHBT-1 can cross the outer mitochondrial membrane and irreversibly inhibit complex I by a mechanism that is not primarily related to oxygen radical-mediated damage. Formation of DHBT-1 requires only dopamine, l -cysteine, and an oxidizing environment, conditions that may well exist in the cytoplasm of neuromelanin-pigmented dopaminergic neurons in the parkinsonian substantia nigra. The results of this study raise the possibility that DHBT-1 might be an endotoxin formed specifically in pigmented dopaminergic neurons that can contribute to irreversible damage to mitochondrial complex I and substantia nigra cell death in Parkinson's disease.  相似文献   

19.
The addition of the organophosphorous plant growth regulator Melaphen (4 × 10?12 M) to the incubation medium increases the maximum rate of oxidation of NAD-dependent substrates in rat liver and sugar beet root mitochondria. In addition, Melaphen stimulates electron transport during oxidation of succinate by rat liver mitochondria, but has no effect on the rate of this substrate oxidation in sugar beet root mitochondria. In storage organs of plants, the rate of oxidation of NAD-dependent substrates by mitochondria is relatively low. By stimulating the activity of NAD-dependent dehydrogenases, Melaphen stimulates energy metabolism in the cells and manifests adaptogenic activity by accelerating the germination of seeds. Melaphen does not influence the fluorescence of lipid peroxidation (LPO) products in mitochondria non-exposed to stress, but decreases 1.5–2 fold the LPO fluorescence in rat liver mitochondria exposed to cold stress and artificially “aged” sugar beet root mitochondria. Besides, Melaphen increases the rate of electron transport in a terminal site of respiratory chains of plant and animal mitochondria and decreases LPO. The data obtained testify to antistress activity of Melaphen.  相似文献   

20.
In vitro, the pyruvate dehydrogenase complex is sensitive to product inhibition by NADH and acetyl-coenzyme A (CoA). Based upon Km and Ki relationships, it was suggested that NADH can play a primary role in control of pyruvate dehydrogenase complex activity in vivo (JA Miernyk, DD Randall [1987] Plant Physiol 83:306-310). We have now extended the in vitro studies of product inhibition by assaying pyruvate dehydrogenase complex activity in situ, using purified intact mitochondria from green pea (Pisum sativum) seedlings. In situ activity of the pyruvate dehydrogenase complex is inhibited when mitochondria are incubated with malonate. In some instances, isolated mitochondria show an apparent lack of coupling during pyruvate oxidation. The inhibition by malonate, and the apparent lack of coupling, can both be explained by an accumulation of acetyl-CoA. Inhibition could be alleviated by addition of oxalacetate, high levels of malate, or l-carnitine. The CoA pool in nonrespiring mitochondria was approximately 150 micromolar, but doubled during pyruvate oxidation, when 60 to 95% of the total was in the form of acetyl-CoA. Our results indicate that in situ activity of the mitochondrial pyruvate dehydrogenase complex can be controlled in part by acetyl-CoA product inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号