首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

2.
为了探讨臭椿酮(ailanthone,AIL)对急性骨髓性白血病(acute myelogenous leukemia,AML)细胞恶性生物学行为的影响,用不同浓度(0.2、0.4、0.8、1.6、3.2μmol·L-1)的AIL处理对数生长期的HL-60细胞,将miR-449a mimic质粒、mimic对照质粒、miR-449a inhibitor质粒、inhibitor对照质粒分别转染至未经任何处理的HL-60细胞,并用1.0μmol·L-1浓度的AIL处理细胞24 h。采用CCK-8法检测细胞增殖水平,细胞划痕实验检测细胞迁移水平,Transwell小室法检测细胞侵袭水平,Annexin V-FITC/PI双染法检测细胞凋亡水平,qRT-PCR法检测miR-449a mRNA表达水平,Western blot法检测磷脂酰肌醇3-激酶(PI3K)、磷酸化PI3K(p-PI3K)、蛋白激酶B(AKT)、磷酸化AKT(p-AKT)蛋白表达水平。结果显示,AIL干预后HL-60细胞增殖抑制率、凋亡率升高,细胞迁移率及细胞侵袭数降低(P<...  相似文献   

3.
目的:探究TAGLN对HBV阳性肝癌细胞HepG2. 2. 15生物学行为的影响及可能的作用机制。方法:免疫组化法和Western blot检测TAGLN在HBV阳性和HBV阴性肝癌组织及细胞中的表达差异;用TAGLN干扰慢病毒感染HepG2. 2. 15细胞,通过嘌呤霉素筛选干扰TAGLN表达的稳定表达细胞系,Western blot验证干扰效率; CCK-8法和克隆形成实验检测干扰TAGLN表达对HepG2. 2. 15细胞增殖能力的影响; Transwell实验检测干扰TAGLN表达对HepG2. 2. 15细胞迁移和侵袭的影响; Western blot检测PI3K、p-PI3K、AKT以及p-AKT的表达。结果:TAGLN在HBV阳性肝癌组织及细胞中的表达高于HBV阴性肝癌组织和细胞(P 0. 01);干扰TAGLN表达能抑制HepG2. 2. 15细胞增殖、克隆形成能力、迁移和侵袭(P 0. 01);降低HepG2. 2. 15细胞中PI3K和AKT(P 0. 01)及p-PI3K和p-AKT(P 0. 05)的表达。结论:在肝癌组织中,HBV感染能增加TAGLN的表达;干扰TAGLN表达后HepG2. 2. 15细胞的增殖能力、克隆形成能力、迁移和侵袭的能力减弱,其机制可能与PI3K及AKT的表达减少有关。  相似文献   

4.
为了探讨Rh type C glycoprotein (RHCG)对非小细胞肺癌(non-small cell lung cancer,NSCLC)细胞增殖的影响及可能的作用机制,本研究使用荧光定量PCR法检测12对NSCLC及癌旁组织样本中RHCG mRNA的表达水平及pcDNA3.1-RHCG质粒对A549细胞RHCG m RNA的表达;采用CCK-8法检测细胞增殖能力;运用PI染色法检测细胞周期;使用免疫印迹法检p-PI3K、PI3K、p-AKT以及AKT蛋白表达水平。本研究发现,与癌旁组织比较,NSCLC中RHCG m RNA表达水平明显降低。RHCG过表达能抑制NSCLC细胞系A549细胞增殖能力。此外,RHCG过表达使A549细胞周期G1/S期转化发生阻滞。本研究还发现,RHCG过表达可下调A549细胞p-PI3K/PI3K和p-AKT/AKT水平。本研究表明,RHCG抑制NSCLC细胞增殖的作用与其抑制PI3K/AKT信号通路有关。  相似文献   

5.
ObjectiveCancer-associated fibroblasts (CAFs) function as a crucial factor in tumor progression by carrying exosomes to neighboring cells. This study was assigned to expound the underlying mechanism of CAFs-derived exosomal miR-210 in non-small cell lung cancer (NSCLC) progression.MethodCAFs and normal fibroblasts (NFs) were isolated and identified. Exosomes secreted from CAFs and NFs were isolated to analyze their effects on tumor volume and epithelial-mesenchymal transition (EMT). Exosomal miR-210 expression level was measured. The effects of exosomal miR-210 and UPF1 on cell viability, EMT, PTEN/PI3K/AKT signal pathway were determined. Dual-luciferase reporter gene assay was utilized to validate the binding of UPF1 to miR-210.ResultsCAFs-derived exosomes (CAFs-exo) were successfully extracted and proven to be uptake by lung cancer cells. Up-regulated expression level of miR-210 was found in CAFs-exo, which was then proved to enhance cell migration, proliferation, invasion abilities and EMT in NSCLC cells. Overexpression of miR-210 can also inhibit UPF1 and PTEN, but activate the PTEN/PI3K/AKT pathway. UPF1 was a target gene of miR-210. MiR-210 can up-regulate UPF1 expression level to activate PTEN/PI3K/AKT pathway.ConclusionMiR-210 secreted by CAFs-exo could promote EMT by targeting UPF1 and activating PTEN/PI3K/AKT pathway, thereby promoting NSCLC migration and invasion.  相似文献   

6.
《Reproductive biology》2023,23(1):100729
Recently, it has been proposed that epithelial-mesenchymal transition (EMT) plays a key role in the development of endometriosis (EMs). Although EMs is a benign disease, it has the characteristics of malignant tumors, such as invasion and migration. JARID2 (Jumonji, AT rich interaction domain) can induce EMT in cancer cells to increase their invasion and migration abilities. However, whether JARID2 has the same function in EMs is not yet known. In this study, A retrospective immunohistochemistry(IHC) was used to measure the expression of JARID2, E-cadherin, PTEN, and p-AKT in ovarian endometriosis (OE) tissues. JARID2, EMT and PTEN/AKT signaling pathway related indicators were assessed by RT-PCR and western blotting in vitro. Furthermore, functional assays were applied to evaluate the involvement of JARID2 in the invasion and migration of Ishikawa cells. Here,we conclude that JARID2 could be involved in the PTEN/AKT signalling pathway and contribute to the development of ovarian endometriosis. The expression of JARID2 was negatively correlated with PTEN, but positively correlated with p-AKT in the ectopic endometrial tissues of OE cases. JARID2 overexpression increased the expression of N-cadherin, vimentin and AKT, but inhibited the expression of E-cadherin and PTEN. Accordingly, the opposite results were obtainedwhen JARID2 was downregulated. Furthermore, JARID2 promoted the invasion and migration ability of Ishikawa cells.  相似文献   

7.
Epithelial-mesenchymal transition (EMT) is a crucial event for cancer progression and metastasis. Metastasis suppressor protein 1 (MTSS1) is a metastasis suppressor in several cancers. In this study, we elucidated the potential physiological function of MTSS1 in the invasion and migration of gastric cancer (GC), and its distinct role in EMT and subsequently determined the potential molecular mechanism. We observed that MTSS1 expression was downregulated in GC tissues and several GC cell lines (SGC-7901, MGC-803, MKN-28, MKN-45, and BGC-823). Importantly, forced expression of MTSS1 drastically diminished the cell viability in both SGC-7901 and MKN-45 cells. Moreover, overexpression of MTSS1 attenuated the invasion ability of these two cell lines. In addition to the invasive capability, introduction of MTSS1 led to a loss of migratory potential. Furthermore, augmentation of MTSS1 exhibited the typical EMT phenotype switch, accompanied by enhanced the expression of vimentin and N-cadherin and reduced E-cadherin expression. Interestingly, MTSS1 also repressed transforming growth factor beta 1 (TGF-β1)-induced EMT. Our mechanistic investigations revealed that MTSS1 was positively regulated by the phosphatase and tensin homolog (PTEN), and it functioned as a tumor suppressor, possibly by inactivating the phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene (AKT) pathway in GC cells. Collectively, our data provide insight into an important role for MTSS1 in suppressing tumor cell invasion, migration and EMT, which indicates that MTSS1 may act as a prospective prognostic biological marker and a promising therapeutic target for GC.  相似文献   

8.
9.
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.  相似文献   

10.
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1, p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.  相似文献   

11.
FMNL2 is a member of diaphanous-related formins that control actin-dependent processes such as cell motility and invasion. Its overexpression in metastatic cell lines and tissues of colorectal carcinoma has been associated with aggressive tumor development in our previous study. But its specific role in cancer is largely unknown. Here we report that FMNL2 is involved in epithelial-mesenchymal transition (EMT) maintenance in human colorectal carcinoma cells. A positive correlation between FMNL2 and vimentin expression and an inverse correlation between FMNL2 and E-cadherin expression were found in colorectal carcinoma cell lines and cancer tissues. Specific knockdown of FMNL2 led to an epithelial-state transition, confirmed by the cobblestone-like phenotype, upregulation of E-cadherin, α-catenin, and γ-catenin, and downregulation of vimentin, snail, slug. Loss of FMNL2 expression lowered the ability of TGF-β to induce cell invasion and EMT, as shown by morphology and the expression levels. Upregulation of vimentin, slug, snail, downregulation of E-cadherin and activation of receptor-Smad3 phosphorylation were observed in M5 and MDCK cells induced by TGF-β, whereas altered expression of these markers was not obvious in FMNL2-depleting M5 cells. High levels of activation of p-MAPK and p-MEK, but not p-PI3K and p-AKT, were observed in SW480/FMNL2+ cells compared with control cells. Treatment with U0126 could abrogate the activation of p-MAPK and p-MEK, whereas LY294002 treatment had no effect on the PI3K/AKT pathway. In conclusion, these findings identify a novel EMT and tumor promoting function for FMNL2, which is involved in TGF-β-induced EMT and colorectal carcinoma cell invasion via Smad3 effectors, or in collaboration with MAPK/MEK pathway.  相似文献   

12.
Breast cancer (BC) is a common malignancy which is the most frequently diagnosed cancer in women all over the worldwide. This study aimed to investigate the roles of miR-1469 in the development of BC, as well as its regulatory mechanism. The expression levels of miR-1469 in BC tissues, serum, and cell lines were determined. Effects of overexpression of miR-1469 on MCF7 cell viability, colony-forming ability, apoptosis, migration, and invasion were then investigated. Furthermore, the potential target of miR-1469 in MCF7 cells was explored. Besides, the association between miR-1469, PTEN/PI3K/AKT, and Wnt/β-catenin pathways was elucidated. Notably, confirmatory experiments by downregulation of miR-1469 in SK-BR-3 cells were further performed. The miR-1469 expression was significantly downregulated in BC tissues, serum, and cell lines. The overexpression of miR-1469 significantly inhibited the proliferation, arrested cell-cycle at G2/M phase, increased apoptosis, suppressed migration, and invasion of MCF-7 cells. In addition, HOXA1 was verified as a direct target of miR-1469, and the effects of overexpression of miR-1469 on the malignant behaviors of MCF7 cells were significantly counteracted by overexpression of HOXA1 concurrently. Furthermore, the overexpression of miR-1469 suppressed the activation of PTEN/PI3K/AKT and Wnt/β-catenin pathways, which was reversed overexpression of HOXA1 concurrently. Besides, confirmatory experiments showed that the inhibition of miR-1469 promoted the malignant behaviors of SK-BR-3 cells, which was inversed after miR-1469 inhibition and HOXA1 knockdown at the same time. Our findings reveal that downregulation of miR-1469 may promote the development of BC by targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways. MiR-1469 may serve as a promising target for BC therapy.  相似文献   

13.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

14.
Multiple studies have shown that protein kinase Bβ (AKT2) is involved in the development and progression of ovarian cancer, however, its precise role remains unclear. Here we explored the underlying molecular mechanisms how AKT2 promotes ovarian cancer progression. We examined the effects of AKT2 in vitro in two ovarian cancer cell lines (SKOV3 and HEY), and in vivo by metastasis assay in nude mice. The migration and invasion ability of SKOV3 and HEY cells was determined by transwell assay. Overexpression and knockdown (with shRNA) experiments were carried out to unravel the underlying signaling mechanisms induced by AKT2. Overexpression of AKT2 led to increased expression of pyruvate kinase (PKM2) in ovarian cancer cells and in lung metastatic foci from nude mice. Elevated AKT2/PKM2 expression induced cell migration and invasion in vitro, as well as lung metastasis in vivo; silencing AKT2 blocked these effects. Meanwhile, PKM2 overexpression was unable to increase AKT2 expression. The expressions of p-PI3K, p-AKT2, and PKM2 were increased when stimulated by epidermal growth factor (EGF); however, these expressions were blocked when inhibited the PI3K by LY294002. STAT3 expression was elevated and NF-κB p65 nuclear translocation was activated both in vitro and in vivo when either AKT2 or PKM2 was overexpressed; and these effects were inhibited when silencing AKT2 expression. Taken together, AKT2 increases the migration and invasion of ovarian cancer cells in vitro and promotes lung metastasis in nude mice in vivo through PKM2-mediated elevation of STAT3 expression and NF-κB activation. In conclusion, we highlight a novel mechanism of the AKT2-PKM2-STAT3/NF-κB axis in the regulation of ovarian cancer progression, and our work suggested that both AKT2 and PKM2 may be potential targets for the treatment of ovarian cancer.  相似文献   

15.
目的:探讨mi R-506和PI3K/AKT信号通路在自发性高血压大鼠心脏重构中的作用。方法:将12只雄性自发性高血压大鼠(Spontaneous Hypertension Rat, SHR)随机分为2组,每组6只。分别为SHR模型组和治疗组(卡托普利,30 mg·kg~(-1)),6只健康WKY大鼠作为空白对照组。SHR模型组和空白对照组灌胃等体积生理盐水,连续给药8周,采用尾动脉测压法测定给药前后各组大鼠血压,采用qRT-PCR法检测各组大鼠心肌miR-506表达量,并检测大鼠心肌组织中SOD和GPx mRNA表达水平,免疫印迹检测大鼠心肌中p-PI3K和p-AKT的蛋白表达量。结果:SHR模型组血压为(184.79±3.35)mmHg,与空白对照组比较显著升高(P0.05),治疗组血压为(133.57±1.43)mm Hg,与SHR模型组相比均显著降低(P0.05)。SHR模型组大鼠心肌中mi R-506、SOD、GPx的RNA相对表达量分别为(0.36±0.05)、(0.27±0.04)和(0.32±0.02),与空白对照组比较显著降低(P0.05),而p-PI3K、p-AKT蛋白水平显著降低(P0.05),与SHR模型组比较,治疗组大鼠心肌中mi R-506以及SOD、GPx的RNA水平显著升高(P0.05),p-PI3K、p-AKT蛋白水平显著升高(P0.05)。结论:在卡托普利治疗高血压的过程中,mi R-506可能通过抑制PI3K/AKT信号通路提高机体的抗氧化能力促进SHR心脏重塑。  相似文献   

16.
Tumor suppressor long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) exists in various cancers. Nonetheless, the functions of lncRNA MEG3 in choriocarcinoma (CC) are still not well studied. We explored the effects of lncRNA MEG3 on human CC JEG-3 and BeWo cells. lncRNA MEG3 was overexpressed, and the effects of lncRNA MEG3 on cell viability, proliferation, apoptosis, migration, and invasion were assessed by the cell counting kit-8 assay, western blot analysis, flow cytometry (plus western blot analysis), and transwell assay (plus western blot analysis), respectively. Then, the expression level of miR-211 was detected by real-time quantitative polymerase chain reaction. After that, the effects of dysregulated microRNA-211 (miR-211) with overexpressing lncRNA MEG3 on JEG-3 cells and BeWo cells were testified. Western blot analysis was used to study the involvements of the signaling pathways in the lncRNA MEG3-associated modulation. We found that lncRNA MEG3 upregulation reduced cell viability, inhibited proliferation, migration and invasion, and promoted apoptosis. Expression of miR-211 was upregulated after lncRNA MEG3 overexpression. Effects of lncRNA MEG3 overexpression were augmented by miR-211 overexpression, while they were declined by miR-211 silencing. Phosphorylated levels of PI3K, AKT, and AMP-activated protein kinase (AMPK) were decreased by lncRNA MEG3 overexpression via regulation of miR-211. To sum up, lncRNA MEG3 could repress proliferation, migration and invasion, and promote apoptosis of JEG-3 and BeWo cells through upregulating miR-211. The PI3K/AKT and AMPK pathways were inhibited by lncRNA MEG3 overexpression via regulation of miR-211.  相似文献   

17.
摘要 目的:探究烟酰胺磷酸核糖转移酶(Nampt)及高糖高胰岛素(HG+HI)微环境对人顺铂耐药肺癌细胞增殖和转移的影响。方法:将人顺铂耐药细胞株A549/DDP分为6组(n=6):对照组(control)、高糖高胰岛素干预组(HH,使用添加30 mmol/L的葡萄糖和500 mU/L的胰岛素的培养基培养72 h)、分别转染sh-NC和sh-Nampt组(sh-NC和sh-Nampt,使用Lipofectamine 2000将sh-NC和sh-Nampt分别转染到细胞中,转染时间为48 h)、HH干预sh-NC和sh-Nampt组(HH+sh-NC和HH+sh-Nampt)。每组6个重复样本。qRT-PCR检测转染效率,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,Transwell检测细胞迁移和侵袭,qRT-PCR检测Nampt mRNA,Western blot检测Nampt、Bcl-2、Bax、MMP-2、MMP-9、p-PI3K、PI3K、p-AKT和AKT蛋白表达。结果:与对照组和sh-NC组比较,sh-Nampt组的Nampt mRNA和蛋白表达水平、相对细胞活力、迁移和侵袭细胞数量降低,而细胞凋亡率升高,Bcl-2、MMP-2、MMP-9、Nampt、p-PI3K和p-AKT蛋白表达水平降低,Bax蛋白表达水平升高(P<0.005)。与对照组和sh-NC组比较,HH组和HH+sh-NC组的Nampt mRNA和蛋白表达水平、相对细胞活力、迁移和侵袭细胞数量升高,Bcl-2、MMP-2、MMP-9、Nampt、p-PI3K和p-AKT蛋白表达水平升高,Bax蛋白表达水平降低(P<0.005)。与HH组和HH+sh-NC组比较,HH+sh-Nampt组的Nampt mRNA和蛋白表达水平、相对细胞活力、迁移和侵袭细胞数量降低,细胞凋亡率升高,Bcl-2、MMP-2、MMP-9、Nampt、p-PI3K和p-AKT蛋白表达水平降低,Bax蛋白表达水平升高(P<0.005)。结论:高糖高胰岛素微环境可能通过上调Nampt/PI3K/AKT信号通路诱导人顺铂耐药肺癌细胞的增殖和转移。  相似文献   

18.
19.
We previously reported a novel positive feedback loop between thioredoxin‐1 (Trx‐1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx‐1 and S100P in CRC epithelial‐to‐mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx‐1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx‐1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx‐1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P‐ or Trx‐1‐mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P‐ or Trx‐1‐induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx‐1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx‐1 knockdown‐induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx‐1 and S100P promoted CRC EMT as well as migration and invasion by up‐regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号