首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.  相似文献   

2.
Cereal opaque-kernel mutants are ideal genetic materials for studying the mechanism of starch biosynthesis and amyloplast development. Here we isolated and identified two allelic floury endosperm 8 (flo8) mutants of rice, named flo8-1 and flo8-2. In the flo8 mutant, the starch content was decreased and the normal physicochemical features of starch were altered. Map-based cloning and subsequent DNA sequencing analysis revealed a single nucleotide substitution and an 8-bp insertion occurred in UDP-glucose pyrophosphorylase 1 (Ugp1) gene in flo8-1 and flo8-2, respectively. Complementation of the flo8-1 mutant restored normal seed appearance by expressing full length coding sequence of Ugp1. RT-qPCR analysis revealed that Ugp1 was ubiquitously expressed. Mutation caused the decreased UGPase activity and affected the expression of most of genes associated with starch biosynthesis. Meanwhile, western blot and enzyme activity analyses showed the comparability of protein levels and enzyme activity of most tested starch biosynthesis related genes. Our results demonstrate that Ugp1 plays an important role for starch biosynthesis in rice endosperm.  相似文献   

3.
4.
The system of transformation of heterologous genes under the method of agrobacterial transfer into Acremonium chrysogenum ATCC 11550 wild-type strains, natural producents of beta-lactam antibiotic cephalosporin C, and strains highly producing cephalosporin C no. 26/8 revealed by the multistage selection on its basis were developed. Vectors for agrobacterial transformation of A. chrysogenum containing expression cassettes of genes encoding resistance to geneticin (G418) and bleomicin (ZeocinTM) antibiotics under control of Ashbya gossypii and Saccharomyces cerevisiae TEF1 promoters were constructed. A comparable assessment of agrotransformation methods while co-cultivating fungi and agrobacterial cells on filters and in deep culture was conducted. Transformants, selected by resistance to geneticin and bleomicin, were characterized by PCR and Southern blot analyses.  相似文献   

5.
6.
7.
Picrosides, the terpenoids synthesized by Picrorhiza kurroa, have ample usage in medicine. Identification of the regulatory enzymes involved in picroside biosynthesis needs to be explored for improving the level of these secondary metabolites. Current efforts are based on the analysis of secondary metabolism in picroside biosynthesis but its interpretation is limited by the lack of information on the involvement of primary metabolic pathways. The present study investigated the connection of primary metabolic enzymes with the picrosides levels in P. kurroa. The results showed changes in the catalytic activities as well as in the gene expression profiles of hexokinase, pyruvate kinase, isocitrate dehydrogenase, malate dehydrogenase, and NADP+-malic enzyme in congruence with picroside-I content under different conditions of P. kurroa growth, which indicates the role of these enzymes in the accumulation of picrosides. The significant correlation coefficients (p?<?0.05) observed between gene expression and enzyme activity underline the role of integrative studies for a better understanding of connecting links between metabolic pathways leading to picroside biosynthesis. This is apparently the first report on the involvement of glycolytic and TCA cycle enzymes in the accumulation of picrosides in P. kurroa.  相似文献   

8.
The plastidic ATP/ADP transporter (AATP) imports adenosine triphosphate (ATP) from the cytosol into plastids, resulting in the increase of the ATP supply to facilitate anabolic synthesis in heterotrophic plastids of dicotyledonous plants. The regulatory role of GmAATP from soybean in increasing starch accumulation has not been investigated. In this study, a gene encoding the AATP protein, named GmAATP, was successfully isolated from soybean. Transient expression of GmAATP in Arabidopsis protoplasts and Nicotiana benthamiana leaf epidermal cells revealed the plastidic localization of GmAATP. Its expression was induced by exogenous sucrose treatment in soybean. The coding region of GmAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of GmAATP significantly increased the sucrose and starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III, and AtSSS IV), and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS, and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild type (WT). These findings suggest that GmAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis. All these results suggest that GmAATP could be used as a candidate gene for developing high starch-accumulating plants as alternative energy crops.  相似文献   

9.
10.
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-l-Tyr-l-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-l-Trp-l-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s?1. Cyclo-l-Tyr-l-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s?1.  相似文献   

11.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

12.
Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg2+, thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.  相似文献   

13.
Vibrio cholerae O1 employs the ATP-binding cassette (ABC) transporter-dependent pathway for O antigen biosynthesis. Different from highly studied Klebsiella pneumoniae and Escherichia coli, it was reported that initial reaction of O antigen biosynthesis in V. cholerae O1 may be involved in WbeW protein, which is predicted to be a galactosyltransferase. In this work, we report expression and characterization of WbeW enzyme. WbeW was expressed as membrane-associated form in E. coli and it was obtained with high purity. The enzyme had a function of transferring Gal-1-P from UDP-Gal to Und-P, implying that initial glycan of O antigen in V. cholerae O1 can be composed of a Gal residue.  相似文献   

14.
15.
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyzes the condensation of acetyl-CoA and acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA as the first committed enzyme in the mevalonate (MVA) pathway. HMGS plays an important role in the biosynthesis of the sesquiterpene, which is the main constituent of essential oil in Matricaria chamomilla. In this paper, a HMGS gene designated as McHMGS (GenBank Accession No. KU529970) was successfully cloned from M. chamomilla. The full-length cDNA of McHMGS was 1495-bp and contained a 1374-bp open reading frame. It encoded a 458-amino-acid protein with a calculated molecular weight of about 50.7 kDa and isoelectric point of 5.69. Sequence comparison revealed that McHMGS showed extensive homology with HMGSs from other plant species. Phylogenetic tree analysis indicated that McHMGS is clustered with the HMGS of Asteraceae in the dicotyledoneae clade. Further functional complementation of McHMGS in hmgs-deficient mutant yeast strain YSC6274 demonstrated that cloned McHMGS cDNA encodes a functional HMGS and mediates the MVA biosynthesis in yeasts. The tissue expression pattern analysis revealed that McHMGS expression level is highest in the flowers and lowest in the stems. Quantitative real-time PCR analysis showed that the expression of McHMGS was induced by MeJA, and the expression level is highest 24 h after induction. The characterization and expression of McHMGS can help in further studying the role of McHMGS gene in the biosynthesis of sesquiterpene in M. chamomilla.  相似文献   

16.
We recently demonstrated the biosynthesis of 24-ethylidene brassinosteroids in Arabidopsis thaliana. To determine the physiological role of biosynthesis of 24-ethylidene brassinosteroids, metabolism of 28-homodolichosterone as the end product of 24-ethylidene brassinosteroids biosynthesis was examined by a crude enzyme solution prepared from A. thaliana. In wild-type plants, dolichosterone and castasterone were identified as enzyme products on GC-MS analysis. In a mutant where DWARF1 was overexpressed (35S-DWF1), the conversion rate of 28-homodolichosterone to castasterone was significantly increased. These results indicate that conversion of 28-homodolichosterone to castasterone is mediated by dolichosterone in Arabidopsis. In the root growth assay, inhibitory activity was enhanced in the order of castasterone > dolichosterone > 28-homodolichosterone, demonstrating that conversion of 28-homodolichosterone to castasterone via dolichosterone is a biosynthetic reaction that increases BR activity in Arabidopsis. Compared to Arabidopsis grown under dark conditions, light-grown Arabidopsis showed up-regulated DWARF1 expression, resulting in an increased conversion rate of 28-homodolichosterone to castasterone, suggesting that light is an important regulatory factor for the biosynthetic connection of 24-ethylidene brassinosteroids and 24-methyl brassinosteroids in A. thaliana. Consequently, 24-ethylidene brassinosteroids biosynthesis to generate 28-homodolichosterone is a lightregulated alternative route for synthesis of the biologically-active BRs, castasterone and brassinolide in Arabidopsis plants.  相似文献   

17.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a′ (Zn-BChl a′) (Tsukatani et al. in J Biol Chem 287:5720–5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a′. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.  相似文献   

18.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

19.
Tryptophan decarboxylase (EC 4.1.1.28) catalyzes pyridoxal 5′-phosphate (PLP)-dependent decarboxylation of tryptophan to produce tryptamine for recruitment in a myriad of biosynthetic pathways of metabolites possessing indolyl moiety. A recent report of certain indolyl metabolites in Withania species calls for a possible predominant functional role of tryptophan decarboxylase (TDC) in the genome of Withania species to facilitate production of the indolyl progenitor molecule, tryptamine. Therefore, with this metabolic prospection, we have identified and cloned a full-length cDNA sequence of TDC from aerial tissues of Withania coagulans. The functional WcTDC gene comprises of 1506 bp open reading frame (ORF) encoding a 502 amino acid protein with calculated molecular mass and pI value of 56.38 kDa and 8.35, respectively. The gene was expressed in Escherichia coli, and the recombinant enzyme was affinity-purified to homogeneity to discern its kinetics of catalysis. The enzyme (WcTDC) exhibited much higher Km value for tryptophan than for pyridoxal 5′-phosphate and was dedicated to catalyze decarboxylation of only tryptophan or, to a limited extent, of its analogue (like 5-hydroxy tryptophan). The observed optimal catalytic functionality of the enzyme on the slightly basic side of the pH scale and at slightly higher temperatures reflected adaptability of the plant to hot and arid regions, the predominant natural habitat of the herb. This pertains to be the first report on cloning and characterization of heterologously expressed recombinant enzyme from W. coagulans and forms a starting point to further understanding of withanamide biosynthesis.  相似文献   

20.
In vitro plant regeneration was established in Echinacea pallida, a plant that is commonly used as a folk medicine to treat the common cold, fevers, inflammation and so on. Conditions for callus induction, lateral root and shoot regeneration were determined. Subsequently, two vectors pCHS and pOSAG78, carrying different selection marker genes resistant to kanamycin and hygromycin, respectively, were independently used to transform leaf explants of E. pallida using an Agrobacterium-mediated method. Genomic PCR analysis confirmed the presence of the transgene and selection marker gene in obtained transgenic lines. Southern hybridization indicated that the T-DNA insertion in some transgenic E. pallida was single copy. Among them, transformants carrying Petunia chalcone synthase (CHS) were selected for further study. CHS is a key enzyme in the biosynthesis of diverse flavonoids including anthocyanin pigmentation. Here, we analyzed the roles and compared the gene expression of two clusters of CHSs, EpaCHS-A and EpaCHS-B (EpaCHS-B1 and EpaCHS-B2), isolated from E. pallida. Two of the genes, EpaCHS-A and EpaCHS-B1, were abundantly expressed in petals, whereas EpaCHS-B2 was expressed at high levels in leaves. The expression of EpaCHSs remained constant in leaves and roots of Petunia CHS transformants, while EpaCHS-B2 expression was changed in flowers of transgenic plants. The biosynthesis of caffeic acid derivatives, cichoric acid and caftaric acid, was increased in leaves and roots of CHS transformants, respectively, while the amount of echinacoside in roots of transgenic plants was decreased. This is the first report on genetic engineering of E. pallida. The information contained herein can be used as a tool for further study of the biological pathways and secondary metabolism of specific compounds from medicinal Echinacea species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号