首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodospirillum rubrum is among the bacteria that can assimilate acetate in the absence of isocitrate lyase, the key enzyme of glyoxylate shunt. Previously we have suggested the functioning of a new anaplerotic cycle of acetate assimilation in this bacterium: citramalate cycle, where acetyl-CoA is oxidized to glyoxylate. This work has demonstrated the presence of all the key enzymes of this cycle in R. rubrum extracts: citramalate synthase catalyzing condensation of acetyl-CoA and pyruvate with the formation of citramalate, mesaconase forming mesaconate from L-citramalate, and the enzymes catalyzing transformation of propionyl-CoA + glyoxylate 3-methylmalyl-CoA ? mesaconyl-CoA. At the same time, R. rubrum synthesizes crotonyl-CoA carboxylase/reductase, which is the key enzyme of ethylmalonyl-CoA pathway discovered recently in Rhodobacter sphaeroides. Physiological differences between the citramalate cycle and the ethylmalonyl-CoA pathway are discussed.  相似文献   

2.
Oxidation of ethanol, acetaldehyde, and acetate in Rhodococcus erythropolis EK-1, producer of surface-active substances (SAS), is catalyzed by N,N-dimethyl-4-nitrosoaniline (DMNA)-dependent alcohol dehydrogenase, NAD+/NADP+-dependent dehydrogenases (optimum pH 9.5), and acetate kinase/acetyl-CoA-synthetase, respectively. The glyoxylate cycle and complete tricarboxylic acid cycle function in the cells of R. erythropolis EK-1 growing on ethanol; the synthesis of phosphoenolpyruvate (PEP) is provided by the two key enzymes of gluconeogenesis, PEP carboxykinase and PEP synthetase. Introduction of citrate (0.1%) and fumarate (0.2%) into the cultivation medium of R. erythropolis EK-1 containing 2% ethanol resulted in the 1.5-and 3.5-fold increase in the activities of isocitrate lyase and PEP synthetase (the key enzymes of the glyoxylate cycle and gluconeogenesis branch of metabolism, respectively) and of lipid synthesis, as evidenced by the 1.5-fold decrease of isocitrate dehydrogenase activity. In the presence of fumarate and citrate, the indices of SAS synthesis by strain R. erythropolis EK-1 grown on ethanol increased by 40–100%.  相似文献   

3.
Assimilation of acetyl coenzyme A (acetyl-CoA) is an essential process in many bacteria that proceeds via the glyoxylate cycle or the ethylmalonyl-CoA pathway. In both assimilation strategies, one of the final products is malate that is formed by the condensation of acetyl-CoA with glyoxylate. In the glyoxylate cycle this reaction is catalyzed by malate synthase, whereas in the ethylmalonyl-CoA pathway the reaction is separated into two proteins: malyl-CoA lyase, a well-known enzyme catalyzing the Claisen condensation of acetyl-CoA with glyoxylate and yielding malyl-CoA, and an unidentified malyl-CoA thioesterase that hydrolyzes malyl-CoA into malate and CoA. In this study the roles of Mcl1 and Mcl2, two malyl-CoA lyase homologs in Rhodobacter sphaeroides, were investigated by gene inactivation and biochemical studies. Mcl1 is a true (3S)-malyl-CoA lyase operating in the ethylmalonyl-CoA pathway. Notably, Mcl1 is a promiscuous enzyme and catalyzes not only the condensation of acetyl-CoA and glyoxylate but also the cleavage of β-methylmalyl-CoA into glyoxylate and propionyl-CoA during acetyl-CoA assimilation. In contrast, Mcl2 was shown to be the sought (3S)-malyl-CoA thioesterase in the ethylmalonyl-CoA pathway, which specifically hydrolyzes (3S)-malyl-CoA but does not use β-methylmalyl-CoA or catalyze a lyase or condensation reaction. The identification of Mcl2 as thioesterase extends the enzyme functions of malyl-CoA lyase homologs that have been known only as “Claisen condensation” enzymes so far. Mcl1 and Mcl2 are both related to malate synthase, an enzyme which catalyzes both a Claisen condensation and thioester hydrolysis reaction.Many organic compounds are initially metabolized to acetyl coenzyme A (acetyl-CoA), at which point they enter the central carbon metabolism. Examples of such growth substrates are C1 and C2 compounds (e.g., methanol and ethanol), fatty acids, waxes, esters, alkenes, or (poly)hydroxyalkanoates. The synthesis of all cell constituents from acetyl-CoA requires a specialized pathway for the conversion of this central C2 unit into other biosynthetic precursor metabolites. This (anaplerotic) process is referred to as acetyl-CoA assimilation, and two very different strategies have been described, i.e., the glyoxylate cycle and the ethylmalonyl-CoA pathway (12, 21) (Fig. (Fig.11).Open in a separate windowFIG. 1.Pathways for acetyl-CoA assimilation. (A) Glyoxylate cycle. The key enzymes are isocitrate lyase and malate synthase. (B) Ethylmalonyl-CoA pathway. The unique enzymes of the pathway are crotonyl-CoA carboxylase/reductase, ethylmalonyl-CoA/methylmalonyl-CoA epimerase, (2R)-ethylmalonyl-CoA mutase, (2S)-methylsuccinyl-CoA dehydrogenase, mesaconyl-CoA hydratase, (3S)-malyl-CoA/β-methylmalonyl-CoA lyase, and (3S)-malyl-CoA thioesterase. The enzymes involved in the (apparent) malate synthase reaction(s) are boxed for each pathway.The glyoxylate cycle for acetyl-CoA assimilation is in fact a modified citric acid cycle that converts two molecules of acetyl-CoA to the citric acid cycle intermediate malate (Fig. (Fig.1A)1A) (21). In a first reaction sequence, one molecule of acetyl-CoA is converted into glyoxylate due to the combined action of the initial enzymes of the citric acid cycle and isocitrate lyase, the key enzyme of this assimilation strategy. Isocitrate lyase cleaves the citric cycle intermediate isocitrate into succinate and glyoxylate (22). The glyoxylate formed is then condensed in a second step with another molecule of acetyl-CoA to yield malate and free CoA. Because the two decarboxylation reactions of the citric acid cycle are circumvented by this acetyl-CoA assimilation strategy, the glyoxylate cycle is also referred to as the “glyoxylate bypass” or “glyoxylate shunt.”The ethylmalonyl-CoA pathway for acetyl-CoA assimilation replaces the glyoxylate cycle in bacteria that lack isocitrate lyase (1, 12). In this linear pathway, three molecules of acetyl-CoA, one molecule of CO2, and one molecule of bicarbonate are converted to the citric acid cycle intermediates succinyl-CoA and malate (Fig. (Fig.1B).1B). The ethylmalonyl-CoA pathway requires at least seven unique enzymes. Crotonyl-CoA carboxylase/reductase, ethylmalonyl-CoA mutase, and methylsuccinyl-CoA dehydrogenase are considered key enzymes of the pathway, and all three enzymes have been characterized from Rhodobacter sphaeroides (12-14).Although these two acetyl-CoA strategies differ with respect to their reaction sequence, intermediates and overall balance, the glyoxylate cycle and the ethylmalonyl-CoA pathway both require the condensation of acetyl-CoA and glyoxylate to form malate (Fig. (Fig.1,1, boxed). In the glyoxylate cycle, this reaction is catalyzed by malate synthase, whereas in the ethylmalonyl-CoA pathway malate synthase is catalyzed by two separate enzymes, malyl-CoA lyase and malyl-CoA thioesterase (7, 26).Malyl-CoA lyases catalyze the reversible condensation of acetyl-CoA and glyoxylate into malyl-CoA and have been purified from Methylobacterium extorquens, Chloroflexus aurantiacus, Aminobacter aminovorans, and Rhodobacter capsulatus; the corresponding genes were identified as mclA (M. extorquens), mcl (C. aurantiacus), and mcl1 (R. capsulatus) (5, 16, 17, 19, 26). Remarkably, these proteins are promiscuous enzymes that also catalyze the (reversible) cleavage of β-methylmalyl-CoA into glyoxylate and propionyl-CoA, and it has been suggested that these enzymes catalyze both reactions in vivo (16, 19, 26). However, in contrast to malyl-CoA lyase, the malyl-CoA thioesterase catalyzing the highly exergonic hydrolysis of the CoA-thioester into malate and free CoA has not been identified so far, and the nature of the enzyme has remained enigmatic (7, 26).For R. sphaeroides, a malyl-CoA lyase homolog has been shown to be upregulated during growth on acetate, and it was proposed that this protein (Mcl1) catalyzes the cleavage of β-methylmalyl-CoA, as well as the condensation of acetyl-CoA and glyoxylate in the ethylmalonyl-CoA pathway (1). Interestingly, R. sphaeroides encodes a second malyl-CoA lyase homolog with 34% amino acid sequence identity to Mcl1. This protein, named Mcl2, was also shown to be upregulated during growth of R. sphaeroides on acetate, but a function could not be assigned so far (1). We therefore addressed the function of both malyl-CoA lyase homologs by gene inactivation and biochemical studies of recombinant Mcl1 and Mcl2. Based on our findings, we confirm here the function of Mcl1 in R. sphaeroides as (3S)-malyl-CoA/β-methylmalyl-CoA lyase and identify its paralog Mcl2 as the long-sought (3S)-malyl-CoA thioesterase.  相似文献   

4.
In the aerobic methanotrophic bacteria Methylomicrobium alcaliphilum 20Z, Methylococcus capsulatus Bath, and Methylosinus trichosporium OB3b, the biochemical properties of hydroxypyruvate reductase (Hpr), an indicator enzyme of the serine pathway for assimilation of reduced C1-compounds, were comparatively analyzed. The recombinant Hpr obtained by cloning and heterologous expression of the hpr gene in Escherichia coli catalyzed NAD(P)H-dependent reduction of hydroxypyruvate or glyoxylate, but did not catalyze the reverse reactions of D-glycerate or glycolate oxidation. The absence of the glycerate dehydrogenase activity in the methanotrophic Hpr confirmed a key role of the enzyme in utilization of C1-compounds via the serine cycle. The enzyme from Ms. trichosporium OB3b realizing the serine cycle as a sole assimilation pathway had much higher special activity and affinity in comparison to Hpr from Mm. alcaliphilum 20Z and Mc. capsulatus Bath assimilating carbon predominantly via the ribulose monophosphate (RuMP) cycle. The hpr gene was found as part of gene clusters coding the serine cycle enzymes in all sequenced methanotrophic genomes except the representatives of the Verrucomicrobia phylum. Phylogenetic analyses revealed two types of Hpr: (i) Hpr of methanotrophs belonging to the Gammaproteobacteria class, which use the serine cycle along with the RuMP cycle, as well as of non-methylotrophic bacteria belonging to the Alphaproteobacteria class; (ii) Hpr of methylotrophs from Alpha- and Betaproteobacteria classes that use only the serine cycle and of non-methylotrophic representatives of Betaproteobacteria. The putative role and origin of hydroxypyruvate reductase in methanotrophs are discussed.  相似文献   

5.
The metabolism of the novel facultatively anaerobic thermophilic bacterium Oceanithermus profundus was studied during growth on maltose, acetate, pyruvate, and hydrogen. The utilization of carbohydrates was shown to proceed via the glycolytic pathway. Under microaerobic growth conditions, the metabolism of O. profundus grown on maltose depended on the substrate concentration. At an initial maltose concentration of 1.4 mM, O. profundus carried out oxygen respiration, and in the presence of 3.5 mM maltose, facilitated fermentation occurred, with the formation of acetate and ethanol and limited involvement of oxygen. The use of pyruvate and acetate occurred via the TCA cycle. In cells grown on acetate, the activity of glyoxylate pathway enzymes was revealed. Depending on the energy-yielding process providing for growth (oxygen respiration or nitrate reduction), cells contained cytochromes a and c or b, respectively. The results obtained demonstrate the plasticity of the metabolism of O. profundus, which thus appears to be well-adjusted to the rapidly changing conditions in deep-sea hydrothermal vents.  相似文献   

6.
Two isoforms of malate dehydrogenase (MDH), dimeric and tetrameric, have been found in the purple non-sulfur bacterium Rhodobacter sphaeroides strain 2R, devoid of the glyoxylate shunt, which assimilate acetate via the citramalate cycle. Inhibitory analysis showed that the 74-kDa protein is involved in tricarboxylic acid cycle, while the 148-kDa MDH takes part in the citramalate pathway. A single gene encoding synthesis of the isologous subunits of the MDH isoforms was found during molecular-biological investigations. The appearance in the studied bacterium of the tetrameric MDH isoform during growth in the presence of acetate is probably due to the increased level of mdh gene expression, revealed by the real-time PCR, the product of which in cooperation with the citramalate cycle enzymes plays an important role in acetate assimilation.  相似文献   

7.
The effect of the introduction of a synthetic bypass, providing 2-ketoglutarate to succinate conversion via the intermediate succinate semialdehyde formation, on aerobic biosynthesis of succinic acid from glucose through the oxidative branch of the tricarboxylic acid cycle in recombinant Escherichia coli strains has been studied. The strain lacking the key pathways of acetic, lactic acid and ethanol formation from pyruvate and acetyl-CoA and possessing modified system of glucose transport and phosphorylation was used as a chassis for the construction of the target recombinants. The operation of the glyoxylate shunt in the strains was precluded resulting from the deletion of the aceA, aceB, and glcB genes encoding isocitrate lyase and malate synthases A and G. The constitutive activity of isocitrate dehydrogenase was ensured due to deletion of isocitrate dehydrogenase kinase/phosphatase gene, aceK. Upon further inactivation of succinate dehydrogenase, the corresponding strain synthesized succinic acid from glucose with a molar yield of 24.9%. Activation of the synthetic bypass by the induced expression of Mycobacterium tuberculosis 2-ketoglutarate decarboxylase gene notably increased the yield of succinic acid. Functional activity of the synthetic bypass in the strain with the inactivated glyoxylate shunt and opened tricarboxylic acid cycle led to 2.7-fold increase in succinate yield from glucose. As the result, the substrate to the target product conversion reached 67.2%. The respective approach could be useful for the construction of the efficient microbial succinic acid producers.  相似文献   

8.
This study was performed to produce ethanol from acetate using a genetically engineered Ralstonia eutropha. In order to genetically modify R. eutropha H16, phaCAB operon encoding metabolic pathway genes from acetyl-CoA to polyhydroxybutyrate (PHB) was deleted and adhE encoding an alcohol dehydrogenase from Escherichia coli was overexpressed for conversion of acetyl-CoA to ethanol. The resulting strain produced ethanol up to 170 mg/L when cultivated in minimal media supplemented with 5 g/L of acetate as a sole carbon source. Growth and ethanol production were optimized by adjusting nitrogen source (NH4Cl) content and repetitive feeding of acetate into the bacterial culture, by which the ethanol production was reached to approximately 350 mg/L for 84 h.  相似文献   

9.
Moorella thermoacetica is one of the model acetogenic bacteria for the resolution of the Wood–Ljungdahl (acetyl-CoA) pathway in which CO2 is autotrophically assimilated yielding acetyl-CoA as central intermediate. Its further conversion into acetate relies on subsequent phosphotransacetylase (PTA) and acetate kinase reactions. However, the genome of M. thermoacetica contains no pta homologous gene. It has been speculated that the moth_0864 and moth_1181 gene products sharing similarities with an evolutionarily distinct phosphotransacylase involved in 1,2-propanediol utilization (PDUL) of Salmonella enterica act as PTAs in M. thermoacetica. Here, we demonstrate specific PTA activities with acetyl-CoA as substrate of 9.05 and 2.03 U/mg for the recombinant enzymes PDUL1 (Moth_1181) and PDUL2 (Moth_0864), respectively. Both showed maximal activity at 65 °C and pH 7.6. Native proteins (90 kDa) are homotetramers composed of four subunits with apparent molecular masses of about 23 kDa. Thus, one or both PDULs of M. thermoacetica might act as PTAs in vivo catalyzing the penultimate step of the Wood–Ljungdahl pathway toward the formation of acetate. In silico analysis underlined that up to now beside of M. thermoacetica, only Sporomusa ovata contains only PDUL like classIII-PTAs but no other phosphotransacetylases or phosphotransbutyrylases (PTBs).  相似文献   

10.
Acetone degradation by cell suspensions of Desulfobacterium cetonicum was CO2-dependent, indicating initiation by a carboxylation reaction. Degradation of butyrate was not CO2-dependent, and acetate accumulated at a ratio of 1 mol acetate per mol butyrate degraded. In cultures grown on acetone, no CoA transfer apparently occurred, and no acetate accumulated in the medium. No CoA-ligase activities were detected in cell-free crude extracts. This suggested that the carboxylation of acetone to acetoacetate, and its activation to acetoacetyl-CoA may occur without the formation of free acetoacetate. Acetoacetyl-CoA was thiolytically cleaved to two acetyl-CoA, which were oxidized to CO2 via the acetyl-CoA/carbon monoxide dehydrogenase pathway. The measured intracellular acyl-CoA ester concentrations allowed the calculation of the free energy changes involved in the conversion of acetone to acetyl-CoA. At in vivo concentrations of reactants and products, the initial steps (carboxylation and activation) must be energy-driven, either by direct coupling to ATP, or coupling to transmembrane gradients. The G of acetone conversion to two acetyl-CoA at the expense of the energetic equivalent of one ATP was calculated to lie very close to 0kJ (mol acetone)-1. Assimilatory metabolism was by an incomplete citric acid cycle, lacking an activity oxidatively decarboxylating 2-oxoglutarate. The low specific activities of this cycle suggested its probable function in anabolic metabolism. Succinate and glyoxylate were formed from isocitrate by isocitrate lyase. Glyoxylate thus formed was condensed with acetyl-CoA to form malate, functioning as an anaplerotic sequence. A glyoxylate cycle thus operates in this strictly anaerobic bacterium. Phosphoenolpyruvate (PEP) carboxykinase formed PEP from oxaloacetate. No pyruvate kinase activity was detected. PEP presumably served as a precursor for polyglucose formation and other biosyntheses.Abbreviations MV 2+ Oxidized methyl viologen - PEP Phosphoenolpyruvate - PHB Poly--hydroxybutyrate  相似文献   

11.
The capacities of relatively nontoxic lipopolysaccharide (LPS) from Rhodobacter capsulatus PG and highly potent LPS from Salmonella enterica serovar Typhimurium to evoke proinflammatory cytokine production have been compared in vivo. Intravenous administration of S. enterica LPS at a relatively low dose (1 mg/kg body weight) led to upregulation of TNF-α, IL-6, and IFN-γ production by non-sensitized CD-1 mice. LPS from R. capsulatus PG used at a four-times higher dose than that from S. enterica elicited production of almost the same amount of systemic TNF-α; therefore, the doses of 4 mg/kg LPS from R. capsulatus PG and 1 mg/kg LPS from S. enterica were considered to be approximately equipotential doses with respect to the LPS-dependent TNF-α production by CD-1 mice. Rhodobacter capsulatus PG LPS was a weaker inducer of the production of TNF-α, IL-6, and IFN-γ, as compared to the equipotential dose of S. enterica LPS. Administration of R. capsulatus PG LPS before S. enterica LPS decreased production of IFN-γ, but not of TNF-α and IL-6, induced by S. enterica LPS. Rhodobacter capsulatus PG LPS also suppressed IFN-γ production induced by S. enterica LPS when R. capsulatus PG LPS had been injected as little as 10 min after S. enterica LPS, but to a much lesser extent. Rhodobacter capsulatus PG LPS did not affect TNF-α and IL-6 production induced by the equipotential dose of S. enterica LPS. In order to draw conclusion on the endotoxic activity of particular LPSs, species-specific structure or arrangement of the animal or human immune systems should be considered.  相似文献   

12.

Introduction

Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin–Benson–Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application.

Objectives

In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling.

Methods

In this study, steady-state carbon labelling experiments, using either d-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively.

Results

We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner–Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism.

Conclusion

This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16.
  相似文献   

13.
Strains of Yarrowia lipolytica were engineered to express the poly-3-hydroxybutyrate (PHB) biosynthetic pathway. The genes for β-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHB synthase were cloned and inserted into the chromosome of Y. lipolytica. In shake flasks, the engineered strain accumulated PHB to 1.50 and 3.84% of cell dry weight in complex medium supplemented with glucose and acetate as carbon source, respectively. In fed-batch fermentation using acetate as sole carbon source, 7.35 g/l PHB (10.2% of cell dry weight) was produced. Selection of Y. lipolytica as host for PHB synthesis was motivated by the fact that this organism is a good lipids producer, which suggests robust acetyl-CoA supply also the precursor of the PHB pathway. Acetic acid could be supplied by gas fermentation, anaerobic digestion, and other low-cost supply route.  相似文献   

14.
Kochia sieversiana (Pall.) C.A. Mey. is a forage plant that can grow in extremely alkalinized grasslands at pH 10 or higher. Accumulation of a large amount of oxalic acid (OxA) is a primary characteristic of K. sieversiana. In our study, seedlings of K. sieversiana were exposed to the following conditions: non-stress, salinity (200 mM, a molar ratio of NaCl and Na2SO4 1:1), and alkali stress (200 mM, a molar ratio of NaHCO3 and Na2CO3 1:1). Growth, water content, content of organic acids (including OxA), Na+, and K+, and activities of some OxA metabolism-related enzymes were determined. Results show that glycolate oxidase was the key enzyme for OxA synthesis; however, the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase (PEPC) probably played a minor role in the OxA-synthetic pathway. The pathway of L-ascorbic acid catabolism was not the main source of OxA accumulation, and the activity of oxalate oxidase (OxO) involved in OxA decomposition was not a limiting factor for inner OxA accumulation. Taken together, accumulation of a large amount of OxA are not related to the degradation and secretion function of OxO but largely depend upon its synthetic function.  相似文献   

15.
The dynamics of antagonistic potency of lipopolysaccharide (LPS) isolated from Rhodobacter capsulatus PG on the synthesis of proinflammatory (TNF-α, IL-1β, IL-8, IL-6, IFN-γ) and antiinflammatory (IL-10, IL-1Ra) cytokines induced by highly stimulatory endotoxins from Escherichia coli or Salmonella enterica have been studied. Using human whole blood, we have shown that R. capsulatus PG LPS inhibited most pronouncedly the endotoxin-induced synthesis of TNF-α, IL-1β, IL-8, and IL-6 during the first 6 h after endotoxin challenge. Similarly, the endotoxin-induced release of IFN-γ was abolished by R. capsulatus PG LPS as well (24 h). In contrast to the above-mentioned cytokines, the relatively weak antagonistic activity of R. capsulatus PG LPS against endotoxin-triggered production of IL-6 and IL-8 was revealed. Since R. capsulatus PG LPS displays more potent antagonistic activity against deleterious effects of S. enterica LPS than those of E. coli LPS in the cases of such cytokines as IL-1β (6 and 24 h), IL-6 and IL-8 (4 h), we conclude that the effectiveness of protective action of antagonist is mostly determined by the primary lipid A structure of the employed agonist.  相似文献   

16.
The R and M phase variants of Rhodobacter sphaeroides and Rhodobacter capsulatus were isolated. The growth rates in the dark and in the light in glucose-containing media were much higher for the Rba. sphaeroides R variant than for the M variant. For the Rba. capsulatus R and M variants, growth rates in the dark and in the light in fructose- or glucose-containing media differed insignificantly. The cells of Rba. sphaeroides and Rba. capsulatus phase variants growing in media with glucose and fructose exhibited differences in activity of the key enzymes of the Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways. The oxidative pentose phosphate pathway (PPP) does not participate in glucose and fructose metabolism in the studied bacteria. Specific activity of the ED pathway enzymes was higher in dark-grown R and M variants of both Rba. sphaeroides and Rba. capsulatus than in the cells grown under light. Specific activity of the EMP enzymes was higher for the R and M variants of both cultures grown in the light than for those grown in the dark. Activities of the 2-keto-3-deoxy-6-phosphogluconate and fructose bisphosphate aldolases, the key enzymes of the ED and EMP pathways in Rba. sphaeroides M variant grown in the medium with glucose in the light or in the dark, were approximately twice those of the R variant. In the medium with fructose activities of these enzymes in both R and M variants did not change significantly depending on growth conditions. Activities of the enzymes of the EMP and ED pathways in the extracts of the Rba. capsulatus R and M cells grown with glucose or fructose did not change significantly. Cultivation of Rba. sphaeroides and Rba. capsulatus phase variants in the medium with fructose resulted in a considerably increased synthesis of 1-phosphofructokinase. Induction of 1-phosphofructokinase synthesis in Rba. sphaeroides occurred only in the light, while in Rba. capsulatus induction of this enzyme in the medium with fructose was observed both in the dark and in the light. Thus, under aerobic conditions in the dark the phase variants of both bacteria probably assimilated glucose and fructose via the ED pathway, while in the light the EMP pathway was active.  相似文献   

17.
Efficient production of sesquiterpenes in Saccharomyces cerevisiae requires a high flux through the mevalonate pathway. To achieve this, the supply of acetyl-CoA plays a crucial role, partially because nine moles of acetyl-CoA are necessary to produce one mole of farnesyl diphosphate, but also to overcome the thermodynamic constraint imposed on the first reaction, in which acetoacetyl-CoA is produced from two moles of acetyl-CoA by acetoacetyl-CoA thiolase. Recently, a novel acetoacetyl-CoA synthase (nphT7) has been identified from Streptomyces sp. strain CL190, which catalyzes the irreversible condensation of malonyl-CoA and acetyl-CoA to acetoacetyl-CoA and, therefore, represents a potential target to increase the flux through the mevalonate pathway. This study investigates the effect of acetoacetyl-CoA synthase on growth as well as the production of farnesene and compares different homologs regarding their efficiency. While plasmid-based expression of nphT7 did not improve final farnesene titers, the construction of an alternative pathway, which exclusively relies on the malonyl-CoA bypass, was detrimental for growth and farnesene production. The presented results indicate that the overall functionality of the bypass was limited by the efficiency of acetoacetyl-CoA synthase (nphT7). Besides modulation of the expression level, which could be used as a means to partially restore the phenotype, nphT7 from Streptomyces glaucescens showed clearly higher efficiency compared to Streptomyces sp. strain CL190.  相似文献   

18.
Two cyanobacterial genes ccaA and FBP/SBPase related to CO2 hydration and Calvin cycle were induced into rice plants. Three homologous transgenic strains were generated with ccaA and FBP/SBPase alone or in combination independently and grown under field conditions. The biochemical, physiological, and leaf anatomic results indicated that stomatal and mesophyll conductance to CO2, net photosynthetic rate, carboxylation efficiency, and other physiological and biochemical parameters increased significantly in the overexpression strains with FBP/SBPase and CcaA + FBP/SBPase but not in the CcaA strain. Leaf anatomy structure showed no significant modifications between the transgenic and wild-type strains. The CcaA protein was shown to be located in the cytoplasm. These results showed that the effect on improving photosynthetic capacity by FBP/SBPase was better than by CcaA, and only when CcaA was co-transformed with FBP/SBPase was the synergistic effect observed. The multigene-stacking approaches and their synergistic action for improving the photosynthetic capacity in rice are discussed.  相似文献   

19.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   

20.
Citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. We compared citramalate and acetate accumulation from glycerol using Escherichia coli strains expressing a modified citramalate synthase gene cimA from Methanococcus jannaschii. These studies revealed that gltA coding citrate synthase, leuC coding 3-isopropylmalate dehydratase, and acetate pathway genes play important roles in elevating citramalate and minimizing acetate formation. Controlled 1.0 L batch experiments confirmed that deletions in all three acetate-production genes (poxB, ackA, and pta) were necessary to reduce acetate formation to less than 1 g/L during citramalate production from 30 g/L glycerol. Fed-batch processes using MEC568/pZE12-cimA (gltA leuC ackA-pta poxB) generated over 31 g/L citramalate and less than 2 g/L acetate from either purified or crude glycerol at yields exceeding 0.50 g citramalate/g glycerol in 132 h. These results hold promise for the viable formation of citramalate from unrefined glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号